Skip to main content
Log in

Substrate degradation by a mutualistic association of two species in the Chemostat

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We discuss a system of ordinary differential equations that can be used to model the interspecies hydrogen transfer common in anaerobic degradation of organic matter. The mutualistic character of the interaction is not modeled explicitly but emerges as a consequence of the kinetics of nutrient uptake. Using monotonicity assumptions on the reaction terms, we characterise the equilibria and their stability and demonstrate two-parameter bifurcation of periodic solutions near singularities of the Bogdanov-Takens type. We have persistence and extinction results in a wide range of parameter values. Finally, we give some conditions for equivalence and non-equivalence to a cooperative system and compare to related models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol'd, V. I.: Lectures on bifurcation in versal families. Russ. Math. Surv. 27, 54–123 (1972)

    Google Scholar 

  2. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R., Wolfe, R. S.: Methanogens: Revaluation of a Unique Biological Group. Microbiol. Rev. 43, 260–296 (1979)

    Google Scholar 

  3. Bogdanov, R. I.: Versal Deformations of a Singularity of a Vector Field on the Plane in the Case of Zero Eigenvalues. Sel. Math. Sov. 1, 389–421 (1981)

    Google Scholar 

  4. Bryant, M. P., Wolin, E. A., Wolin, M. J., Wolfe, R. S.: Methanobacillus omelianskii, a Symbiotic Association of Two Species of Bacteria. Arch. Mikrobiol. 59, 20–31 (1967)

    Google Scholar 

  5. Burchard, A.: Ein Chemostat-Modell für den Abbau eines komplexen Substrats durch eine symbiotische Assoziation zweier Spezies. Diplomarbeit, Universität Heidelberg 1989

    Google Scholar 

  6. Butler, G. J., Waltman, P.: Persistence in Dynamical Systems. (Preprint)

  7. Butler, G. J., Freedman, H. I., Waltman, P.: Uniformly Persistent Systems. Proc. Am. Math. Soc. 96, 425–430 (1986)

    Google Scholar 

  8. Chow, S.-N., Hale, J.: Methods of Bifurcation Theory. Berlin Heidelberg New York: Springer 1982

    Google Scholar 

  9. Fiedler, B.: An Index for Global Hopf Bifurcation in Parabolic Systems. J. Reine Angew. Math. 359, 1–36 (1985)

    Google Scholar 

  10. Fiedler, B.: Global Hopf Bifurcation of Two Parameter Flows. Arch. Ration. Mech. Anal. 94, 59–81 (1986)

    Google Scholar 

  11. Gottschal, J. C., Dijkhuizen, L.: The Place of the Continuous Culture in Ecological Research. In.: Wimpenny, J. W. T. (ed.) Handbook of Laboratory Model Systems for Microbial Ecosystems, vol. 1. Boca Raton, Fl: CRC Press 1988

    Google Scholar 

  12. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. (Appl. Math. Sci., vol. 42) Berlin Heidelberg New York: Springer 1983

    Google Scholar 

  13. Hirsch, M. W.: Stability and convergence in strongly monotone dynamical systems. J. Reine Angew. Math. 383, 1–53(1988)

    Google Scholar 

  14. Hungate, R. E.: Hydrogen as an Intermediate in the Rumen Fermentation. Arch. Mikrobiol. 59, 158–164 (1967)

    Google Scholar 

  15. Hungate, R. E.: A Roll Tube Method for Cultivation of Strict Anaerobes. In: Noris, R., Ribbons, D. W. (eds.) Methods in Microbiology, vol. 3B. New York: Academic Press 1969

    Google Scholar 

  16. Ianotti, E. L., Kafkewitz, D., Wolin, M. J., Wolfe, R. S.: Glucose fermentation products of ruminococcus albus grown in continuous culture with vibrio succinogenes. J. Bacteriol. 114, 1231–1240 (1973)

    Google Scholar 

  17. Kreikenbohm, R., Bohl, E.: A Mathematical Model of Syntrophic Cocultures in the Chemostat. FEMS Microbiol. Ecol. 38, 131–140 (1986)

    Google Scholar 

  18. Mah, R. A., Smith, M. R.: The Methanogenic Bacteria. In: The Prokaryotes. A Handbook on Habitats, Isolation and Identification of Bacteria. Berlin Heidelberg New York: Springer 1981

    Google Scholar 

  19. Marsden, J. E., McCracken M.: The Hopf Bifurcation and its Applications. Berlin Heidelberg New York: Springer 1976

    Google Scholar 

  20. Matano, H.: Strongly order-preserving local semidynamical systems — theory and applications. In: Brezis, H. et al. (eds.) Semigroups, theory and applications, vol.I. Trieste 1984. (Pitman Res. Notes Math. Ser., vol. 141, pp. 178–185) Harlow: Longman 1986

    Google Scholar 

  21. May, R. M. (ed.): Theoretical Ecology, 2nd edition. Sunderland, MA Sinauer: 1981

    Google Scholar 

  22. McInerney, M. J., Bryant, M. P., Pfennig, N.: Anaerobic Bacterium that Degrades Fatty Acids in Syntrophic Association with Methanogens. Arch. Microbiol. 122, 129–135 (1979)

    Google Scholar 

  23. Mountfort, D. O., Bryant, M. P.: Isolation and Characterization of an Anaerobic Benzoate-Degrading Bacterium from Sewage Sludge. Arch. Microbiol. 133, 249–256 (1982)

    Google Scholar 

  24. Orenski, S. W.: Intermicrobial Symbiosis. In: Henry, S. M. (eds.) Symbiosis, vol. l. New York London: Academic Press 1966

    Google Scholar 

  25. Otto, R., Hugenholz, J., Konings, W. N., Veldkamp, H.: Increase in molecular growth of streptococcus cremoris for lactose as a consequence of lactate consumption by pseudomonas stutzen in mixed culture. FEMS Microbiol. Lett. 9, 85 (1980)

    Google Scholar 

  26. Pollock, M. R.: A case of bacterial symbiosis based on the combined growth stimulating and growth inhibiting properties of long-chain fatty acids. J. Gen. Microbiol. 2, xxiii (1948)

    Google Scholar 

  27. Powell, G. E.: Equalisation of Specific Growth Rates for Syntrophic Associations in Batch Culture. J. Chem. Tech. Biotechnol. 34, 97–100 (1984)

    Google Scholar 

  28. Takens, F.: Singularities of vector fields. Publ. Math., Inst. Hautes Étud. Sci. 43, 47–100 (1974)

    Google Scholar 

  29. Traore, A. S., Fardeau, M. L., LeGall, J., Belaich, J. P.: Energetics of growth of a defined mixed culture of desulfovibrio vulgaris and methanosarcina barkeri: Interspecies hydrogen transfer in batch and continuous cultures. Appl. Environ. Microbiol. 46, 1152 (1983)

    Google Scholar 

  30. Wilkinson, T. G., Topiwala, H. H., Hamer, G.: Interactions in am mixed bacterial population growing on methane in continuous culture. Biotechnol. Bioeng. 16, 41 (1974)

    Google Scholar 

  31. Vanderbauwhede, A.: Center manifolds, normal forms and elementary bifurcations. Dyn. Rep. 2, 89–169 (1989)

    Google Scholar 

  32. Zeikus, J. G.: The Biology of Methanogenic Bacteria. Bacteriol. Rev. 41, 514–541 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burchard, A. Substrate degradation by a mutualistic association of two species in the Chemostat. J. Math. Biol. 32, 465–489 (1994). https://doi.org/10.1007/BF00160169

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00160169

Key words

Navigation