Skip to main content
Log in

On the Existence of Complex Dynamics in Pure and Simple Microbial Competition in Bioreactors

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper examines the conditions necessary for the emergence of complex dynamic behavior in systems of pure and simple microbial competition in the chemostat under time-invariant feed conditions. In particular, we study the effect of variable yield coefficients and the presence of microorganisms in the inflow on the dynamics of such systems. This is accomplished through the study of a mathematical model of two microbial populations competing for a single nutrient in a chemostat. A numerical investigation is carried out for a particular case for which the yield coefficient associated with one species is linearly dependent on the substrate, while the other species exists in the inflow. Both Monod and substrate inhibition growth rates are examined. The numerical investigation showed the existence of complex behavior in the model, characterized by the existence of stable quasi-periodic states resulting from torus bifurcations of limit cycles. Also, limit cycles may undergo period doubling leading to periodic states of increasing period. It seems that the variability of the yield coefficient of one species and the presence of at least one microorganism in the inflow are necessary conditions for complex dynamics to arise in pure and simple competition in the chemostat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailey J.E., Ollis D.F.: Biochemical Engineering Fundamentals. McGraw-Hill, New York (1986)

    Google Scholar 

  2. Aris R., Humphrey A.E.: Dynamics of a chemostat in which two organisms compete for a common substrate. Biotechnol. Bioeng. 19, 1375–1386 (1977)

    Article  Google Scholar 

  3. Hsu S.B., Hubbell S., Waltman P.: A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms. SIAM J. Appl. Math. 32, 366–383 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hansen S.R., Hubbell S.P.: Single-nutrient microbial competition: qualitative agreement between experimental and theoretically forecast outcomes. Science 207, 1491–1493 (1980)

    Article  Google Scholar 

  5. Fredrickson A.G., Stephanopoulos G.: Microbial competition. Science 213, 972–979 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Butler G.J., Wolkowicz G.S.K.: A mathematical model of the chemostat with a general class of functions describing nutrient uptake. SIAM J. Appl.Math. 45, 138–151 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wolkowicz G.S.K., Zhiqi L.: Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates. SIAM J. Appl. Math. 52, 222–233 (1985)

    Article  Google Scholar 

  8. Li B.: Global asymptotic behavior of the chemostat: general response functions and different removal rates. SIAM J. Appl. Math. 59, 411–422 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ajbar A., Alhumazi K.: Microbial competition: study of global branching phenomena. AIChE J. 46, 321–334 (2000)

    Article  Google Scholar 

  10. Pavlou S.: Microbial competition in bioreactors. Chem. Ind. Chem. Eng. Q. 12, 71–81 (2006)

    Article  Google Scholar 

  11. El Hajji M., Rapaport A.: Practical coexistence of two species in the chemostat: a slow–fast characterization. Math. Biosci. 218, 33–39 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Powell G.E.: Structural instability of the theory of simple competition. J. Theor. Biol. 132, 421–435 (1988)

    Article  Google Scholar 

  13. Pavlou S., Kevrekidis I.G., Lyberatos G.: On the coexistence of competing microbial species in a chemostat under cycling. Biotechnol. Bioeng. 35, 224–232 (1990)

    Article  Google Scholar 

  14. Smith H.: Competitive coexistence in an oscillating chemostat. SIAM J. Appl. Math. 40, 496–522 (1981)

    Google Scholar 

  15. Hsu S.B.: A competition model for a seasonally fluctuating nutrient. J. Math. Biol. 9, 115–132 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lenas P., Pavlou S.: Periodic, quasi-periodic and chaotic coexistence of two competing microbial populations in a periodically operated chemostat. Math. Biosci. 121, 61–110 (1994)

    Article  MATH  Google Scholar 

  17. Gaki A., Theodorou A., Vayenas D.V., Pavlou S.: Complex dynamics of microbial competition in the gradostat. J. Biotechnol. 139, 38–46 (2009)

    Article  Google Scholar 

  18. Ajbar A., Alhumaizi K.: Dynamics of the Chemostat: A Bifurcation Theory Approach. CRC Press, London (2012)

    Google Scholar 

  19. Ajbar A.: Study of complex dynamics in pure and simple microbial competition. Chem. Eng. Sci. 80, 188–194 (2012)

    Article  Google Scholar 

  20. Andrews J.F.: A mathematical model for the continuous culture of microorganisms utilizing inhibitory substance. Biotechnol. Bioeng. 10, 707–723 (1968)

    Article  Google Scholar 

  21. Crooke P.S., Wei C.J., Tanner R.D.: The effect of the specific growth rate and yield expression on the existence of oscillatory behavior of a continuous fermentation model. Chem. Eng. Commun. 6, 333–339 (1980)

    Article  Google Scholar 

  22. Tang B., Wolkowicz G.S.K.: Mathematical models of microbial growth and competition in the chemostat regulated by cell-bound extracellular enzymes. J. Math. Biol. 31, 1–23 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cammarota, A.: Study of the dynamics of biochemical systems for design and operation of continuous bioreactors. PhD thesis, Universit’a Degli Studi Di Salerno, Italy (2008)

  24. Ivanitskaya J.G., Petrikevich S.B., Bazykin A.D.: Oscillations in continuous cultures of microorganisms: criteria of utility of mathematical models. Biotechnol. Bioeng. 33, 1162–1166 (1989)

    Article  Google Scholar 

  25. Porro D., Martegani E., Ranzi B.M., Alberghina L.: Oscillations in continuous cultures of budding yeast: a segregated parameter analysis. Biotechnol. Bioeng. 32, 411–417 (1988)

    Article  Google Scholar 

  26. Doedel, E.J.; Champneys, A.R.; Fairgrieve, T.F.; Kuznetsov, Y.A.; Sandstede, B.; Wang, X.: AUTO 97: continuation and bifurcation software for ordinary differential equations, users manual. Center for Research on Parallel Computing. California Institute of Technology, Pasadena, CA (1997)

  27. Pilyugin S., Waltman P.: Multiple limit cycles in the chemostat with variable yield. Math. Biosci. 182, 151–166 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhamid Ajbar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajbar, A., Asif, M. On the Existence of Complex Dynamics in Pure and Simple Microbial Competition in Bioreactors. Arab J Sci Eng 39, 7495–7501 (2014). https://doi.org/10.1007/s13369-014-1344-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1344-8

Keywords

Navigation