Skip to main content
Log in

Adenosine triphosphate-lead histochemical reactions in ependymal epithelia of murine brains do not represent calcium transport adenosine triphosphatase

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

The strong enzyme histochemical reactions for adenosine triphosphatase (ATPase) seen in ependymal tanycytes after incubation in calcium-containing media have previously been reported as calcium transport ATPase. Investigation of these reactions showed that: (1) any nucleoside triphosphate can serve as a substrate; (2) diphosphates and monophosphates cannot replace triphosphates; this includes p-nitrophenyl phosphate which is readily hydrolysed by plasma membrane transport ATPases; (3) strong localization occurs in the presence of millimolar concentrations of either calcium or magnesium ions; there is no absolute requirement for calcium ions; (4) they are not inhibited by sulphydryl inhibitors or calmodulin antagonists; (5) lead phosphate precipitates are localized almost entirely on the external face of tanycyte plasma membranes. In addition, the technique gives strong localization to vessels in the choroid plexus but not to the choroidal epithelium. Immunohistochemistry with a primary antibody raised against Ca2+,Mg2+-ATPase stains the choroidal epithelium but not the vessels or the ependymal tanycytes. These results are inconsistent with identification of the reaction as calcium transport ATPase but support characterization as an ecto-ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ando, T., Fujimoto, K., MayaharaH., Miyajima, H. & Ogawa, K. (1980) A new one-step method for the histochemistry and cytochemistry of Ca2+-ATPase activity. Acta Histochem. Cytochem. 14, 705–26.

    Google Scholar 

  • Betz, A. L., Firth, J. A. & Goldstein, G. W. (1981) Polarity of the blood-brain barrier: distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res. 192, 17–28.

    Google Scholar 

  • Bleier, R. (1971) The relations of ependyma to neurones and capillaries in the hypothalamus: a Golgi-Cox study. J. Comp. Neurol. 142, 439–63.

    Google Scholar 

  • Borgers, M. (1973) The cytochemical application of new potent inhibitors of alkaline phosphatase. J. Histochem. Cytochem. 21, 812–24.

    Google Scholar 

  • Borke, J. L., Caride, A. J., Yaksh, T. L., Penniston, J. T. & Kumar, R. (1989) Cerebrospinal fluid calcium homeostasis: evidence for a plasma membrane Ca2+-pump in mammalian choroid plexus. Brain Res. 489, 355–60.

    Google Scholar 

  • Brawer, J. R. (1972) The fine structure of the ependymal tanycytes at the level of the arcuate nucleus. J. Comp. Neurol. 145, 25–41.

    Google Scholar 

  • Brightman, M. W. & Reese, T. S. (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40, 648–77.

    Google Scholar 

  • Chambers, J. P., Kumar, P., Tsin, A. T. C. & Valdes, J. J. (1990) Partial characterization of a high affinity [Ca2+ + Mg2+]- dependent adenosine triphosphatase from bovine retina. Exp. Eye Res. 50, 127–34.

    Google Scholar 

  • Davson, H. (1988) History of the blood-brain barrier concept. In Implications of the Blood-Brain Barrier and its Manipulation (edited by Neuwelt, E. A.) Vol 1. pp. 27–52. New York: Plenum.

    Google Scholar 

  • Ernst, S. A. (1972a) Transport adenosine triphosphatase cytochemistry I. Biochemical characterization of a cytochemical medium for the ultrastructural localization of ouabain-sensitive, potassium-dependent phosphatase activity in the avian salt gland. J. Histochem. Cytochem. 20, 13–22.

    Google Scholar 

  • Ernst, S. A. (1972b) Transport adenosine triphosphatase cytochemistry II. Cytochemical localization of ouabain-sensitive, potassium-dependent phosphatase activity in the secretory epithelium of the avian salt gland. J. Histochem. Cytochem. 20, 23–38.

    Google Scholar 

  • Firth, J. A. (1977) Cytochemical localization of the K+ regulation interface between blood and brain. Experientia 33, 1093–4.

    Google Scholar 

  • Firth, J. A. (1978) Cytochemical approaches to the localization of specific adenosine triphosphatases. Histochem. J. 10, 253–69.

    Google Scholar 

  • Firth, J. A. & Bock, R. (1976) Distribution and properties of an adenosine triphosphatase in the tanycyte ependyma of the IIIrd ventricle of the rat. Histochemistry 47, 145–57.

    Google Scholar 

  • Firth, J. A. & Stranks, G. J. (1981) Gastric proton pump localization. Application of triphosphatase and monophosphatase methods. J. Histochem. Cytochem. 29, 344–50.

    Google Scholar 

  • Gietzen, K., Wuthrich, A. & Bader, H. (1981) R24571: a new powerful inhibitor of red blood cell Ca2+-transport ATPase and of calmodulin-regulated functions. Biochem. Biophys. Res. Commun. 101, 418–25.

    Google Scholar 

  • Hobbs, A. S. & Albers, R. W. (1980) The structure of proteins involved in active membrane transport. Ann. Rev. Biophys. Bioeng. 9, 259–91.

    Google Scholar 

  • Katz, S. & Blostein, R. (1975) Ca2+-stimulated membrane phosphorylation and ATPase activity of the human erythrocyte. Biochim. Biophys. Acta 389, 314–24.

    Google Scholar 

  • Katzman, R. (1976) Maintenance of a constant brain extracellular potassium. Fed. Proc. 35, 1244–7.

    Google Scholar 

  • Lin, S.-H. (1990) Liver plasma membrane ecto-ATPase: purification, localization, cloning, and functions. Ann. N.Y. Acad. Sci. 603, 394–400.

    Google Scholar 

  • Lin, S.-H. & Guidotti, G. (1989) Cloning and expression of a cDNA coding for a rat liver plasma membrane ecto-ATPase. The primary structure of the ecto-ATPase is similar to that of the human biliary glycoprotein 1. J. Biol. Chem. 264, 14 408–14.

    Google Scholar 

  • Lin, S.-H., Culic, O., Flanagan, D. & Hixson, D. C. (1991) Immunochemical characterization of two isoforms of rat liver ecto-ATPase that show an immunological and structural identity with a glycoprotein cell-adhesion molecule with M r 105 000. Biochem. J. 278, 155–61.

    Google Scholar 

  • Nagano, M., Fujioka, A. & Mori, S. (1989) Cytochemistry of Ca2+-ATPase in the tanycyte of the third ventricle. Acta Histochem. Cytochem. 22, 411–9.

    Google Scholar 

  • Nagano, M., Fujioka, A. & Mori, S. (1991) Cytochemical demonstration of Ca2+-ATPase in the choroid plexus of the third ventricle. Acta Histochem. Cytochem. 24, 77–83.

    Google Scholar 

  • Pablo, J., Rossi, F. C., Garrahan, P. J. & Rega, A. F. (1987) Differential effects of compound 48/80 on the ATPase and phosphatase activities of the Ca2+ pump of red cells. Biochim. Biophys. Acta 902, 101–8.

    Google Scholar 

  • Quinton, P. M., Wright, E. M. & Tormey, J. M. (1973) Localization of sodium pumps in the choroid plexus epithelium. J. Cell Biol. 58, 724–30.

    Google Scholar 

  • Rega, A. F., Richards, D. E. & Garrahan, P. J. (1973) Calcium ion-dependent p-nitrophenyl phosphatase activity and calcium ion-dependent adenosine triphosphatase activity from human erythrocyte membranes. Biochem. J. 136, 185–94.

    Google Scholar 

  • Shinogami, H. (1990) Ultracytochemical studies on blood-retinal barriers: enzymatic polarity in retinal capillaries. Ophthalmologica 201, 110–2.

    Google Scholar 

  • Siegel, G. J., Holm, C., Schreiber, J. H., Desmond, T. & Ernst, S. A. (1984) Purification of mouse brain (Na+ + K+)-ATPase catalytic unit, characterization of antiserum and immunocytochemical localization in cerebellum, choroid plexus and kidney. J. Histochem. Cytochem. 32, 1309–18.

    Google Scholar 

  • Slakey, L. L., Gordon, E. L. & Pearson, J. D. (1990) A comparison of ectonucleotidase activities on vascular endothelial and smooth muscle cells. Ann. N.Y. Acad. Sci. 603, 366–79.

    Google Scholar 

  • Stekhoven, F. S. & Bonting, S. L. (1981) Transport adenosine triphosphatases: properties and functions. Physiol. Rev. 61, 1–76.

    Google Scholar 

  • Wachstein, M. & Meisel, E. (1957) Histochemistry of hepatic phosphatases at a physiologic pH. With special reference to the demonstration of bile canaliculi. Amer. J. Clin. Pathol. 27, 13–23.

    Google Scholar 

  • Yoshioka, T., Fujimoto, K. & Tanaka, O. (1990) Ca2+-ATPase cytochemistry in the spinal cord microvasculature of prenatal rats. Histochem. J. 22, 134–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardy, J.D., Firth, J.A. Adenosine triphosphate-lead histochemical reactions in ependymal epithelia of murine brains do not represent calcium transport adenosine triphosphatase. Histochem J 25, 319–324 (1993). https://doi.org/10.1007/BF00159124

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00159124

Keywords

Navigation