Skip to main content
Log in

Alfvén waves in the solar atmosphere

II: Open and closed magnetic flux tubes

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The linearized propagation of axisymmetric twists on axisymmetric vertical flux tubes is considered. Models corresponding to both open (coronal hole) and closed (active region loops) flux tubes are examined. Principal conclusions are: Open flux tubes: (1) With some reservations, the model can account for long-period (T ≈ 1 hr) energy fluxes which are sufficient to drive solar wind streams. (2) The waves are predicted to exert ponderomotive forces on the chromosphere which are large enough to alter hydrostatic equilibrium or to drive upward flows. Spicules may be a consequence of these forces. (3) Higher frequency waves (10 s ≲ T ≲ few min) are predicted to carry energy fluxes which are adequate to heat the chromosphere and corona. Nonlinear mechanisms may provide the damping. Closed flux tubes: (1) Long-period (T ≈ 1 hr) twists do not appear to be energetically capable of providing the required heating of active regions. (2) ‘Loop resonances’ are found to occur as a result of waves being stored in the corona via reflections at the transition zones. The loop resonances act much in the manner of antireflectance coatings on camera lenses, and allow large energy fluxes to enter the coronal loops. The resonances may also be able to account for the observed fact that longer coronal loops require smaller energy flux densities entering them from below. (3) The waves exert large upward and downward forces on the chromosphere and corona.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes, A.: 1966, Phys. Fluids 9, 1483.

    Google Scholar 

  • Barnes, A. and Hollweg, J. V.: 1974, J. Geophys. Res. 79, 2302.

    Google Scholar 

  • Braginskii, S. I.: 1965, Rev. Plasma Phys. 1, 205.

    Google Scholar 

  • Canfield, R. C. and Beckers, J. M.: 1975, Air Force Cambridge Res. Labs, AFCRL-TR-75-0592.

  • Chandrasekhar, S.: 1961, Hydrodynamic and Hydromagnetic Stability, Oxford.

  • Chin, Y. and Wentzel, D. G.: 1972, Astrophys. Space Sci. 16, 465.

    Google Scholar 

  • Deubner, F. L.: 1976, Astron. Astrophys. 51, 189.

    Google Scholar 

  • Drake, J. F. and Lee, Y. C.: 1977, Phys. Fluids 20, 1341.

    Google Scholar 

  • Gabriel, A. H.: 1976, in R. M. Bonnet and Ph. Delache (eds.), ‘Energy Balance and Hydrodynamics of the Solar Chromosphere and Corona’, IAU Colloq. 36, 375.

  • Gingerich, O., Noyes, R. W., Kalkofen, W., and Cuny, Y.: 1971, Solar Phys., 18, 347.

    Google Scholar 

  • Goldstein, M. L., Klinas, A. J., and Barrish, F. D.: 1974, in C. T. Russell (ed.), Solar Wind Three, Univ. of California Press, Los Angeles, p. 385.

    Google Scholar 

  • Hollweg, J. V.: 1971, J. Geophys. Res. 76, 5155.

    Google Scholar 

  • Hollweg, J. V.: 1972, Cosmic Electrodyn. 2, 423.

    Google Scholar 

  • Hollweg, J. V.: 1978a, Solar Phys. 56, 305.

    Google Scholar 

  • Hollweg, J. V.: 1978b, Rev. Geophys. Space Phys. 16, 689.

    Google Scholar 

  • Hollweg, J. V. and Lilliequist, C. G.: 1978, J. Geophys. Res. 83, 2030.

    Google Scholar 

  • Huber, M. C. E., Foukal, P. V., Noyes, R. W., Reeves, E. M., Schmahl, E. J. Timothy, J. G., Vernazza, J. E., and Withbroe, G. L.: 1974, Astrophys. J. 194, L115.

    Google Scholar 

  • Hung, R. J. and Barnes, A.: 1973a, Astrophys. J. 180, 253.

    Google Scholar 

  • Hung, R. J. and Barnes, A.: 1973b, Astrophys. J. 180, 271.

    Google Scholar 

  • Hung, R. J. and Barnes, A.: 1973c, Astrophys. J. 181, 183.

    Google Scholar 

  • Ionson, J.: 1978, Astrophys. J. 226, 650.

    Google Scholar 

  • Kaplan, S. A. and Tsytovich, V. N.: 1973, Plasma Astrophysics, Pergamon.

  • Levine, R.: 1978, J. Geophys. Res. 83, 4193.

    Google Scholar 

  • Malik, F. B. and Trehan, S. K.: 1965, Ann. Phys. 34, 1.

    Google Scholar 

  • Munro, R. and Jackson, B. V.: 1977, Astrophys. J. 213, 874.

    Google Scholar 

  • Nye, A. and Hollweg, J. V.: 1980, Solar Phys. 68, 279.

    Google Scholar 

  • Osterbrock, D. E.: 1961, Astrophys. J. 134, 347.

    Google Scholar 

  • Parker, E. N.: 1974, Astrophys. J. 191, 245.

    Google Scholar 

  • Rosner, R., Tucker, W. H., and Vaiana, G. S.: 1978a, Astrophys. J. 220, 643.

    Google Scholar 

  • Rosner, R., Golub, L., Coppi, B., and Vaiana, G. S.: 1978b, Astrophys. J. 222, 317.

    Google Scholar 

  • Spruit, H.: 1976, Solar Phys. 50, 269.

    Google Scholar 

  • Tucker, W. H.: 1973, Astrophys. J. 186, 285.

    Google Scholar 

  • van de Hulst, H. C.: 1953, in G. Kuiper (ed.), The Sun, Univ. of Chicago Press, Chicago.

    Google Scholar 

  • Vernazza, J. E., Avrett, E. H., and Loeser, R.: 1973, Astrophys. J. 184, 605.

    Google Scholar 

  • Wentzel, D. G.: 1977, Solar Phys. 52, 163.

    Google Scholar 

  • Wentzel, D. G.: 1978, Rev. Geophys. Space Phys. 16, 757.

    Google Scholar 

  • Withbroe, G. L., Jaffe, D. T., Foukal. P. V., Huber, M. C. E., Noyes, R. W., Reeves, E. M., Schmahl, E. J., Timothy, J. G., and Vernazza, J. E.: 1976, Astrophys. J. 203, 528.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollweg, J.V. Alfvén waves in the solar atmosphere. Sol Phys 70, 25–66 (1981). https://doi.org/10.1007/BF00154391

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00154391

Keywords

Navigation