Skip to main content
Log in

Numerical simulation of coronal heating by resonant absorption of Alfvén waves

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The heating of coronal loops by resonant absorption of Alfvén waves is studied in compressible, resistive magnetohydrodynamics. The loops are approximated by straight cylindrical, axisymmetric plasma columns and the incident waves which excite the coronal loops are modelled by a periodic external driver. The stationary state of this system is determined with a numerical code based on the finite element method. Since the power spectrum of the incident waves is not well known, the intrinsic dissipation is computed. The intrinsic dissipation spectrum is independent of the external driver and reflects the intrinsic ability of the coronal loops to extract energy from incident waves by the mechanism of resonant absorption.

The numerical results show that resonant absorption is very efficient for typical parameter values occurring in the loops of the solar corona. A considerable part of the energy supplied by the external driver, is actually dissipated Ohmically and converted into heat. The heating of the plasma is localized in a narrow resonant layer with a width proportional to η 1/3. The energy dissipation rate is almost independent of the resistivity for the relevant values of this parameter. The efficiency of the heating mechanism and the localization of the heating strongly depend on the frequency of the external driver. Resonant absorption is extremely efficient when the plasma is excited with a frequency near the frequency of a so-called ‘collective mode’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appert, K., Berger, D., Gruber, R., and Rappaz, J.: 1975, J. Computational Phys. 18, 284.

    Google Scholar 

  • Appert, K., Balet, B., Gruber, R., Troyon, F., Tsunematsu, T., and Vaclavik, J.: 1980, LRP170/80.

  • Appert, K., Ballet, B., Gruber, R., Troyon, F., and Vaclavik, J.: 1981, Proc. of the 8th Int. Conf. Plasma Phys. and Contr. Nubl. Fusion Research Brussels, Vol. 2, IAEA, Vienna, p. 43.

    Google Scholar 

  • Appert, K., Vaclavik, J., and Villard, L.: 1984, LRP 238/84.

  • Balet, B., Appert, K., and Vaclavik, J.: 1982, Plasma Phys. 24, 1005.

    Google Scholar 

  • Chance, M. S., Green, J. M., Grimm, R. C., and Johnson, J. L.: 1977, Nucl. Fusion 17, 65.

    Google Scholar 

  • Chen, F. F.: 1984, Introduction to Plasma Physics and Controlled Fusion, Vol. 1, 2nd ed., Plenum Press, New York.

    Google Scholar 

  • Chen, L. and Hasegawa, A.: 1974, Phys. Fluids 17, 1399.

    Google Scholar 

  • Foukal, P. V.: 1975, Solar Phys. 43, 327.

    Google Scholar 

  • Foukal, P. V.: 1976, Astrophys. J. 210, 575.

    Google Scholar 

  • Foukal, P. V.: 1978, Astrophys. J. 223, 1046.

    Google Scholar 

  • Gill, R. D. (ed.): 1981, Plasma Physics and Nuclear Fusion Research, Academic Press, London.

    Google Scholar 

  • Goedbloed, J. P.: 1975, Phys. Fluids 18, 1258.

    Google Scholar 

  • Goedbloed, J. P.: 1983, Rijnhuizen Report 83-145.

  • Grossmann, W. and Smith, R. A.: 1988, Astrophys. J. 332, 476.

    Google Scholar 

  • Grossmann, W. and Tataronis, J.: 1973, Z. Phys. 261, 217.

    Google Scholar 

  • Habbal, S. R. and Rosner, R.: 1979, Astrophys. J. 234, 1113.

    Google Scholar 

  • Hasegawa, A. and Chen, L.: 1974, Phys. Fluids 19, 1924.

    Google Scholar 

  • Hasegawa, A. and Chen, L.: 1975, Phys. Rev. Letters 35, 370.

    Google Scholar 

  • Heyvaerts, J. and Priest, E.: 1983, Astron. Astrophys. 117, 220.

    Google Scholar 

  • Hollweg, J. V.: 1979, Solar Phys. 62, 227.

    Google Scholar 

  • Hollweg, J. V.: 1981, Solar Phys. 70, 25.

    Google Scholar 

  • Hollweg, J. V.: 1984a, Astrophys. J. 227, 392.

    Google Scholar 

  • Hollweg, J. V.: 1984b, Solar Phys. 91, 269.

    Google Scholar 

  • Hollweg, J. V.: 1987a, Astrophys. J. 312, 880.

    Google Scholar 

  • Hollweg, J. V.: 1987b, Astrophys. J. 320, 875.

    Google Scholar 

  • Hollweg, J. V. and Sterling, A. C.: 1984, Astrophys. J. 282, L31.

    Google Scholar 

  • Hollweg, J. V. and Yang, G.: 1988, J. Geophys. Res. 93, 5423.

    Google Scholar 

  • Ionson, J. A.: 1978, Astrophys. J. 226, 650.

    Google Scholar 

  • Ionson, J. A.: 1982, Astrophys. J. 254, 318.

    Google Scholar 

  • Ionson, J. A.: 1984, Astrophys. J. 276, 357.

    Google Scholar 

  • Jordan, C. and Linsky, J. L.: 1987, in Y. Kondo (ed.), Exploring the Universe with the IUE Satellite, p. 259.

  • Kappraff, J. M. and Tataronis, J. A.: 1977, J. Plasma Phys. 18, 209.

    Google Scholar 

  • Kerner, W., Lerbinger, K, Gruber, R. and Tsunematsu, T.: 1985, Computer Physics Communications 36, 225.

    Google Scholar 

  • Lee, M. A. and Roberts, B.: 1986, Astrophys. J. 301, 430.

    Google Scholar 

  • Mok, Y. and Einaudi, G.: 1985, J. Plasma Phys. 33, 199.

    Google Scholar 

  • Mullan, D. J. and Stencel, R. E.: 1982, Advances in Ultraviolet Astronomy: Four Years of IUE Research, NASA CP-2238, 235.

  • Nocera, L., Leroy, B., and Priest, E. R.: 1983, Astron. Astrophys. 133, 387.

    Google Scholar 

  • Osterbrock, D. E.: 1961, Astrophys. J. 134, 347.

    Google Scholar 

  • Poedts, S., Kerner, W., and Goossens, M.: 1989, J. Plasma Phys. (submitted).

  • Priest, E. R.: 1984, Solar Magnetohydrodynamics, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Pritchett, P. L. and Dawson, J. M.: 1978, Phys. Fluids 21, 516.

    Google Scholar 

  • Rae, I. C. and Roberts, B.: 1981, Geophys. Astrophys. Fluid Dyn. 18, 197.

    Google Scholar 

  • Rae, I. C. and Roberts, B.: 1982, Monthly Notices Roy. Astron. Soc. 201, 1171.

    Google Scholar 

  • Rappaz, J.: 1975, Num. Math. 28, 15.

    Google Scholar 

  • Roberts, P. H.: 1967, An Introduction to Magnetohydrodynamics, Longmans, London.

    Google Scholar 

  • Rosner, R., Golub, L., and Vaiana, G. S.: 1985, Ann. Rev. Astron. Astrophys. 23, 413.

    Google Scholar 

  • Sakurai, T.: 1985, in H. U. Schmidt (ed.), Proc. of the Workshop MPA/LPARL ‘Theoretical Problems in High Resolution Solar Physics’, Max-Planck-Institut für Astrophysik, Munich, p. 263.

    Google Scholar 

  • Sakurai, T. and Granik, A.: 1984, Astrophys. J. 277, 404.

    Google Scholar 

  • Sedlacek, Z.: 1971, J. Plasma Phys. 5, 239.

    Google Scholar 

  • Steinolfson, R. S.: 1984, Phys. Fluids 27, 781.

    Google Scholar 

  • Steinolfson, R. S.: 1985, Astrophys. J. 295, 213.

    Google Scholar 

  • Strang, G. and Fix, G. J.: 1973, An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Tataronis, J. A.: 1975, J. Plasma Phys. 13, 87.

    Google Scholar 

  • Tataronis, J. and Grossmann, W.: 1973, Z. Phys. 261, 203.

    Google Scholar 

  • Tataronis, J. and Grossmann, W.: 1976, Nucl. Fusion 16, 667.

    Google Scholar 

  • Zweibel, E.: 1980, Solar Phys. 66, 305.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poedts, S., Goossens, M. & Kerner, W. Numerical simulation of coronal heating by resonant absorption of Alfvén waves. Sol Phys 123, 83–115 (1989). https://doi.org/10.1007/BF00150014

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00150014

Keywords

Navigation