Skip to main content
Log in

Line broadening calculations for some infrared solar Fraunhofer lines

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Theoretically calculated damping constants for the solar atmosphere at different optical depths, are compared with empirical values for three infrared multiplets of C i, O i and Si i resp. A test-calculation was also performed for the NaD-doublet broadened by a gas of He particles, for which many theoretical and experimental values are known.

In the case of neutral perturbers (H and He) we assumed that the interatomic potential was not a Van der Waals potential, but that a Smirnov-Roueff potential was the main cause of the line broadening. The latter description produces an enchancement of (γ H + γ He) with somewhat more than 20% in comparison with the pure Van der Waals assumption. Colliding electrons turn out to give a significant contribution γ e to the line broadening, especially towards the center of the solar disk (increasing values of the optical depth τ0). Using the Harvard Smithsonian Reference Atmosphere, assuming that the line broadening was caused almost solely by Van der Waals interaction and adopting abundance values A of Müller (1966), De Jager and Neven (1970) stated that the empirical values of were systematically larger than the theoretical ones, with factors ranging from 1.4 to 4.3. Using the same values for the abundance and the same model atmosphere we established the same discrepancy, but now with a factor ranging only from 0.8 (theoretical value somewhat higher than the empirical one) to 3.1. The discrepancy in the case of the C i multiplet (10700 Å) is almost completely removed. The calculations show further a decreament of γ with decreasing optical depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baranger, M.: 1958, Phys. Rev. 112, 855.

    Google Scholar 

  • Baranger, M.: 1962, in D. R. Bates (ed.), Atomic and Molecular Processes, Academic Press, New York.

    Google Scholar 

  • Bates, D. R. and Damgaard, A.: 1949, Phil. Trans. A 242, 101.

    Google Scholar 

  • Dalgarno, A.: 1962, in D. R. Bates (ed.), Atomic and Molecular Processes, Academic Press, New York.

    Google Scholar 

  • De Jager, C. and Neven, L.: 1970, Solar Phys. 11, 3.

    Google Scholar 

  • Deleage, J. P., Kunth, D., Testor, G., Rostas, F., and Roueff, E.: 1973, J. Phys. B 6 1892.

    Google Scholar 

  • De Loore, C.: 1973, Private communication.

  • Gingerich, O., Noyes, R. W., Kalkofen, W., and Cuny, Y.: 1971, Solar Phys. 018, 347.

    Google Scholar 

  • Gould, L. and Brown, S. C.: 1954, Phys. Rev. 95, 897.

    Google Scholar 

  • Griem, H.: 1968, Phys. Rev. 165, 258.

    Google Scholar 

  • Kelly, H. P.: 1966, Phys. Rev. 152, 62.

    Google Scholar 

  • Landau, L. and Lifchitz, E.: 1967, Mécanique Quantique, Mir, Moscou.

    Google Scholar 

  • Massey, H. S. W. and Burhop, E. H. S.: 1951, Electronic and Ionic Impact Phenomena, Oxford University Press.

  • Moore, C. E.: 1949, Atomic Energy Levels, Circular of the N.B.S. 467, Vol. I.

  • Mott, N. F. and Massey, H. S. W.: 1965, The Theory of Atomic Collisions, Clarendon Press, Oxford.

    Google Scholar 

  • Müller, E. A.: 1966, in H. Hubenet (ed.), ‘Abundance Determinations in Stellar Spectra’, Academic Press, London, IAU Symp. 26.

    Google Scholar 

  • O'Malley, T. F.: 1963, Phys. Rev. 130, 1020.

    Google Scholar 

  • O'Malley, T. F., Spruch, L., and Rosenberg, L.: 1961, J. Math. Phys. 2, 491.

    Google Scholar 

  • Ovchinnikova, M. Y.: 1966, Sov. Phys. JETP 22, 194.

    Google Scholar 

  • Pack, J. L. and Phelps, A. V.: 1961, Phys. Rev. 121, 798.

    Google Scholar 

  • Pack, J. L., Voshall, R. E., and Phelps, A. V.: 1962, Phys. Rev. 127, 798.

    Google Scholar 

  • Phelps, A. V., Fundingsland, O., and Brown, S.: 1951, Phys. Rev. 84, 559.

    Google Scholar 

  • Ramsauer, C. and Kollath, R.: 1929, Ann. Phys. 3, 536.

    Google Scholar 

  • Ramsauer, C. and Kollath, R.: 1932, Ann. Phys. 12, 529 and 837.

    Google Scholar 

  • Roueff, E.: 1970, Astron. Astrophys. 7, 4.

    Google Scholar 

  • Rudkjøbing, M.: 1949, Ann. Astrophys. 12, 229.

    Google Scholar 

  • Schwartz, C.: 1961, Phys. Rev. 124, 1468.

    Google Scholar 

  • Seaton, M. J.: 1958, Monthly Notices Roy. Astron. Soc. 118, 504.

    Google Scholar 

  • Slater, J. C. and Kirkwood, J. G.: 1931, Phys. Rev. 37, 682.

    Google Scholar 

  • Smirnov, B. M.: 1967, Sov. Phys. JETP 24, 314.

    Google Scholar 

  • Teachout, R. R. and Pack, R. T.: 1971, Atomic Data 3, 195.

    Google Scholar 

  • Unsöld, A.: 1968, Physik der Sternatmosphären, Springer, Berlin.

    Google Scholar 

  • Van Rensbergen, W.: 1970, Solar Phys. 11, 11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deridder, G., Van Rensbergen, W. Line broadening calculations for some infrared solar Fraunhofer lines. Sol Phys 34, 77–90 (1974). https://doi.org/10.1007/BF00149600

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00149600

Keywords

Navigation