Skip to main content
Log in

Generation of rotational discontinuities by magnetic reconnection associated with microflares

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Magnetic reconnection can take place between two plasma regions with antiparallel magnetic field components. In a time-dependent reconnection event, the plasma outflow region consists of a leading bulge region and a trailing reconnection layer. Magnetohydrodynamic (MHD) discontinuities, including rotational discontinuities, can be formed in both the bulge region and the trailing layer. In this paper, we suggest that the rotational discontinuities observed in the solar wind may be generated by magnetic reconnection associated with microflares in coronal holes. The structure of the reconnection layer is studied by solving the one-dimensional Riemann problem for the evolution of an initial current sheet after the onset of magnetic reconnection as well as carrying out two-dimensional MHD simulations. As the emerging magnetic flux reconnects with ambient open magnetic fields in the coronal hole, rotational discontinuities are generated in the region with open field lines. It is also found that in the solar corona with a low plasma beta (β ∼ 0.01), the magnetic energy is converted through magnetic reconnection mostly into the plasma bulk-flow energy. Since more microflares will generate more rotational discontinuities and also supply more energy to the solar wind, it is expected that the number of rotational discontinuities observed in the solar wind would be an increasing function of solar wind speed. The observation rate of rotational discontinuities generated by microflares is estimated to be dN RD/dt ∼- f/63 000 s (f > 1) at 1 AU. The present mechanism favors the generation of rotational discontinuities with a large shock normal angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, C. J., Neugebauer, M., Smith, E. J., and Bame, S. J.: 1987, Tech. Note NCAR/TN-306 and Proc. Nat. Conf. for Atmos. Res., Boulder, Colorado, p. 341.

  • Axford, W. I. and McKenzie, J. F.: 1992, in E. Marsch and R. Schwenn (eds.), Solar Wind Seven, Pergamon Press, Oxford, p. 1.

    Google Scholar 

  • Barnes, A.: 1979, in E. N. Parker, C. F. Kennel, and L. J. Lanzerotti (eds.), Solar System Plasma Phys. 1, North-Holland Co., p. 249.

  • Biernat, H. K., Heyn, M. F., Rijnbeek, R. P., Semenov, V. S., and Farrugia, C. J.: 1989, J. Geophys. Res. 94, 287.

    Google Scholar 

  • Biernat, H. K. et al.: 1992, J. Geophys. Res. 92, 3392.

    Google Scholar 

  • Burlaga, L. F.: 1971, J. Geophys. Res. 76, 4360.

    Google Scholar 

  • Burlaga, L. F., Lemaire, J. E, and Turner, J. M.: 1977, J. Geophys. Res. 82, 3191.

    Google Scholar 

  • Cohen, R. H. and Kulsrud, R. R.: 1974, Phys. Fluids 17, 2215.

    Google Scholar 

  • Dere, K. P.: 1992, in E. Marsch and R. Schwenn (eds.), Solar Wind Seven, Pergamon Press, Oxford, p. 11.

    Google Scholar 

  • Dungey, J. W.: 1961, Phys. Rev. Letters 6, 47.

    Google Scholar 

  • Goodrich, C. C. and Cargill, P. J.: 1991, Geophys. Res. Letters 18, 65.

    Google Scholar 

  • Habbal, S. R.: 1992, in E. Marsch and R. Schwenn (eds.), Solar Wind Seven, Pergamon Press, Oxford, p. 41.

    Google Scholar 

  • Hau, L.-N. and Sonnerup, B. U. O.: 1989, J. Geophys. Res. 94, 6539.

    Google Scholar 

  • Hau, L.-N. and Sonnerup, B. U. O.: 1991, J. Geophys. Res. 96, 15767.

    Google Scholar 

  • Heyn, M. F., Biernat, H. K., Rijnbeek, P. P., and Semenov, V. S.: 1988, J. Plasma Phys. 40, 235.

    Google Scholar 

  • Heyvaerts, J., Priest, E. R., and Rust, D. M.: 1977, Astrophys. J. 216, 123.

    Google Scholar 

  • Jeffrey, A. and Taniuti, T.: 1964, Non-Linear Wave Propagation, Academic, Orlando.

    Google Scholar 

  • Kennel, C. F., Buti, B., Hada, T., and Pellat, R.: 1988, Phys. Fluids 31, 1949.

    Google Scholar 

  • Kentrowitz, A. R. and Petschek, H. E.: 1966, in W. B. Kunkel (ed.), Plasma Physics in Theory and Application, MacGraw-Hill, New York, p. 148.

    Google Scholar 

  • Landau, L. D. and Lifshitz, E. M.: 1960, Electrodynamics of Continuous Media, Pergamon Press, London.

    Google Scholar 

  • LaBelle-Hamer, A., Otto, A., and Lee, L. C.: 1994, Phys. Plasmas 1, 706.

    Google Scholar 

  • Lee, L. C. and Kan, J. R.: 1982, J. Geophys. Res. 87, 139.

    Google Scholar 

  • Lee, L. C., Huang, L. and Chao, J. K.: 1989, J. Geophys. Res. 94, 8813.

    Google Scholar 

  • Lepping, R. P. and Behannon, K. W.: 1980, NASA Tech. Memo. 82036, NASA Goddard Space Flight Center, Greenbelt, Md.

    Google Scholar 

  • Lepping, R. P. and Behannon, K. W.: 1986, J. Geophys. Res. 91, 8725.

    Google Scholar 

  • Levy, R. H., Petschek, H. E., and Siscoe, G. L.: 1964, AIAA J. 2, 2065.

    Google Scholar 

  • Lin, Y. and Lee, L. C.: 1993, J. Geophys. Res. 98, 3919.

    Google Scholar 

  • Lin, Y. and Lee, L. C.: 1994, Space Sci. Rev. 65, 59.

    Google Scholar 

  • Lin, Y., Lee, L. C., and Kennel, C. F.: 1992, Geophys. Res. Letters 19, 229.

    Google Scholar 

  • Lyu, L. H. and Kan, J. R.: 1989, J. Geophys. Res. 94, 6523.

    Google Scholar 

  • Ma, Z. W., Lee, L. C., and Otto, A.: 1995, J. Geophys. Res. 100, in press.

  • Mariani, F., Bavassano, B., Villante, U., and Ness, N. F.: 1973, J. Geophys. Res. 78, 9011.

    Google Scholar 

  • Martin, R. N., Belcher, J. W., and Lazarus, A. J.: 1973, J. Geophys. Res. 78, 3653.

    Google Scholar 

  • Martin, S. F.: 1988, Solar Phys. 117, 243.

    Google Scholar 

  • Neubauer, F. M. and Barnstorf, H.: 1981, Rep. MAPE-W-100–81–31, Lindau, Germany, p. 116.

    Google Scholar 

  • Neugebauer, M.: 1989, Geophys. Res. Letters 16, 1261.

    Google Scholar 

  • Neugebauer, M.: 1992, in E. Marsch and R. Schwenn (eds.), Solar Wind Seven, Pergamon Press, Oxford, p. 69.

    Google Scholar 

  • Neugebauer, M., Clay, D. R., Goldstein, B. E., Tsurutani, B. T., and Zwickl, R. D.: 1984, J. Geophys. Res. 89, 5393.

    Google Scholar 

  • Parker, E. N.: 1957, J. Geophys. Res. 62, 509.

    Google Scholar 

  • Parker, E. N.: 1963, Astrophys. J. Suppl. Ser. 8, 117.

    Google Scholar 

  • Parker, E. N.: 1991, Astrophys. J. 372, 719.

    Google Scholar 

  • Petschek, H. E.: 1964, in AAS-NASA Symposium on the Physics of Solar Flares, NASA Spec. Publ. SP-50, 425.

  • Porter, J. G., Moore, R. L., Reichmann, E. J., Engvold, O., and Harvey, K. L.: 1987, Astrophys. J. 241, 394.

    Google Scholar 

  • Priest, E. R. and Forbes, T. G.: 1986, J. Geophys. Res. 91, 5579.

    Google Scholar 

  • Richter, P. and Scholer, M.: 1989, Geophys. Res. Letters 16, 1257.

    Google Scholar 

  • Sato, T.: 1979, J. Geophys. Res. 84, 7177.

    Google Scholar 

  • Scholer, M.: 1989, J. Geophys. Res. 94, 15099.

    Google Scholar 

  • Semenov, V. S., Kubyshkin, I. V., Lebedeva, V. V., Sidneva, M. V., Biernat, H. K., Heyn, M. F., Besser, B. P., and Rijnbeek, R. P.: 1992, J. Geophys. Res. 97, 4251.

    Google Scholar 

  • Shi, Y. and Lee, L. C.: 1990, Planetary Space. Sci. 38, 437.

    Google Scholar 

  • Siscoe, G. L.: 1974, in C. T. Russell (ed.), Solar Wind 3 IGPP, UCLA, p. 151.

  • Smith, E. J.: 1973, J. Geophys. Res. 78, 2054.

    Google Scholar 

  • Solodyna, C. V., Sari, J. W., and Belcher, J. W.: 1977, J. Geophys. Res. 82, 10.

    Google Scholar 

  • Sonnerup, B. U. O.: 1970, J. Plasma Phys. 4, 161.

    Google Scholar 

  • Sonnerup, B. U. O., Paschmann, G., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S. J., Asbridge, J. R., Gosling, J. T., and Russell, C. T.: 1981, J. Geophys. Res. 86, 10049.

    Google Scholar 

  • Sweet, P. A.: 1958, in B. Lehnert (ed.), Electromagnetic Phenomena in Cosmical Physics, Cambridge University Press, London, p. 123.

    Google Scholar 

  • Swift, D. W. and Lee, L. C.: 1983, J. Geophys. Res. 88, 111.

    Google Scholar 

  • Taniuti, T.: 1962, Prog. Theor. Phys. 28, 756.

    Google Scholar 

  • Turner, J. M.: 1973, J. Geophys. Res. 78, 59.

    Google Scholar 

  • Turner, J. M. and Siscoe, G. L.: J. Geophys. Res. 76, 1816.

  • Ugai, M.: 1984, Plasma Phys. Contr. Fusion 26, 1549.

    Google Scholar 

  • Wang, D. J. and Sonnerup, B. U. O.: 1984, Phys. Fluids 27, 2828.

    Google Scholar 

  • Withbroe, G. L.: 1988, Astrophys. J. 325, 442.

    Google Scholar 

  • Wu, C. C.: 1990, J. Geophys. Res. 95, 8149.

    Google Scholar 

  • Wu, C. C. and Kennel, C. F.: 1992, Phys. Rev. Letters 68, 56.

    Google Scholar 

  • Yan, M., Lee, L. C., and Priest, E. R.: 1992, J. Geophys. Res. 97, 8277.

    Google Scholar 

  • Yang, C-K and Sonnerup, B. U. O.: 1977, J. Geophys. Res. 82, 699.

    Google Scholar 

  • Yeh, T. and Axford, W.: 1970, J. Plasma. Phys. 4, 207.

    Google Scholar 

  • Zirker, J. B. (ed.): 1977, Coronal Holes and High-Speed Wind Streams, Colorado Associated University Press, Boulder, p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, L.C., Lin, Y. & Choe, G.S. Generation of rotational discontinuities by magnetic reconnection associated with microflares. Sol Phys 163, 335–359 (1996). https://doi.org/10.1007/BF00148006

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00148006

Keywords

Navigation