Skip to main content

Pulsar Striped Winds

  • Chapter
  • First Online:
Modelling Pulsar Wind Nebulae

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 446))

Abstract

According to magnetohydrodynamic (MHD) models, the rotational energy of a rapidly spinning neutron star is carried away by a relativistic wind and deposited at a large distance, in the nebula, downstream of the wind termination shock. The energy transport in the outflow is mediated by Poynting flux, but it is not clear how the energy stored in the fields is transferred into the energized population of emitting particles. The most plausible dissipation mechanisms are thought to be related to the “striped” structure of the wind, in particular, to the existence of a current sheet, prone to reconnection events. In this model the current sheet is a natural place for internal dissipation and acceleration of particles responsible for pulsed, high-energy emission. Moreover, reconnection is a promising scenario for explaining annihilation of fields at the shock and conversion of their energy into the kinetic energy of particles. The shock structure, however, is likely to differ in the low-density plasmas, in which non-MHD effects intervene. In this regime, the striped wind can dissipate its energy via an electromagnetic precursor of the shock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdo, A.A., et al.: Fermi large area telescope observations of the Crab pulsar and nebula. Astrophys. J. 708, 1254–1267 (2010)

    Article  ADS  Google Scholar 

  • Abdo, A.A., et al.: Discovery of high-energy gamma-ray emission from the binary system PSR B1259-63/LS 2883 around periastron with fermi. Astrophys. J. 736, L11 (2011)

    Google Scholar 

  • Aleksić, J., et al.: Detection of bridge emission above 50 GeV from the Crab pulsar with the MAGIC telescopes. Astron. Astrophys. 565, L12 (2014)

    Google Scholar 

  • Amano, T., Kirk, J.G.: The role of superluminal electromagnetic waves in pulsar wind termination shocks. Astrophys. J. 770, 18 (2013)

    Article  ADS  Google Scholar 

  • Ansoldi, S., et al.: Teraelectronvolt pulsed emission from the Crab pulsar detected by MAGIC. Astron. Astrophys. 585, A133 (2016)

    Article  Google Scholar 

  • Arka, I., Kirk, J.G.: Superluminal waves in pulsar winds. Astrophys. J. 745, 108 (2012)

    Article  ADS  Google Scholar 

  • Arons, J., Scharlemann, E.T.: Pair formation above pulsar polar caps – structure of the low altitude acceleration zone. Astrophys. J. 231, 854–879 (1979)

    Article  ADS  Google Scholar 

  • Asseo, E., Pellat, R., Llobet, X.: Spherical propagation of large amplitude pulsar waves. Astron. Astrophys. 139, 417–425 (1984)

    ADS  Google Scholar 

  • Bai, X.-N., Spitkovsky, A.: Uncertainties of modeling gamma-ray pulsar light curves using vacuum dipole magnetic field. Astrophys. J. 715, 1270–1281 (2010)

    Article  ADS  Google Scholar 

  • Barnard, J.J., Arons, J.: Pair production and pulsar cutoff in magnetized neutron stars with nondipolar magnetic geometry. Astrophys. J. 254, 713–734 (1982)

    Article  ADS  Google Scholar 

  • Bessho, N., Bhattacharjee, A.: Fast collisionless reconnection in electron-positron plasma. Phys. Plasmas 14(5), 056503 (2007)

    Article  ADS  Google Scholar 

  • Bogovalov, S.V.: On the physics of cold MHD winds from oblique rotators. Astron. Astrophys. 349, 1017–1026 (1999)

    ADS  Google Scholar 

  • Bucciantini, N., Arons, J., Amato, E.: Modelling spectral evolution of pulsar wind nebulae inside supernova remnants. Mon. Not. R. Astron. Soc. 410, 381–398 (2011)

    Article  ADS  Google Scholar 

  • Buckley, R.: Pulsar magnetospheres with arbitrary geometry in the force-free approximation. Mon. Not. R. Astron. Soc. 180, 125–140 (1977)

    Article  ADS  Google Scholar 

  • Cerutti, B., Uzdensky, D.A., Begelman, M.C.: Extreme particle acceleration in magnetic reconnection layers: application to the gamma-ray flares in the Crab nebula. Astrophys. J. 746, 148 (2012)

    Article  ADS  Google Scholar 

  • Cerutti, B., Werner, G.R., Uzdensky, D.A., Begelman, M.C.: Three-dimensional relativistic pair plasma reconnection with radiative feedback in the Crab nebula. Astrophys. J. 782, 104 (2014)

    Article  ADS  Google Scholar 

  • Cerutti, B., Philippov, A., Parfrey, K., Spitkovsky, A.: Particle acceleration in axisymmetric pulsar current sheets. Mon. Not. R. Astron. Soc. 448, 606–619 (2015)

    Article  ADS  Google Scholar 

  • Cheng, K.S., Ho, C., Ruderman, M.: Energetic radiation from rapidly spinning pulsars. I – outer magnetosphere gaps. II – VELA and Crab. Astrophys. J. 300, 500–539 (1986)

    Article  Google Scholar 

  • Clemmow, P.C.: Nonlinear waves in a cold plasma by Lorentz transformation. J. Plasma Phys. 12, 297–317 (1974)

    Article  ADS  Google Scholar 

  • Contopoulos, I., Kazanas, D.: Toward resolving the Crab σ-problem: a linear accelerator? Astrophys. J. 566, 336–342 (2002)

    Article  ADS  Google Scholar 

  • Coroniti, F.V.: Magnetically striped relativistic magnetohydrodynamic winds – the Crab nebula revisited. Astrophys. J. 349, 538–545 (1990)

    Article  ADS  Google Scholar 

  • Daugherty, J.K., Harding, A.K.: Electromagnetic cascades in pulsars. Astrophys. J. 252, 337–347 (1982)

    Article  ADS  Google Scholar 

  • de Jager, O.C., Harding, A.K., Michelson, P.F., Nel, H.I., Nolan, P.L., Sreekumar, P., Thompson, D.J.: Gamma-ray observations of the Crab nebula: a study of the synchro-compton spectrum. Astrophys. J. 457, 253 (1996)

    Article  ADS  Google Scholar 

  • de Oña-Wilhelmi, E., Rudak, B., Barrio, J.A., Contreras, J.L., Gallant, Y., Hadasch, D., Hassan, T., Lopez, M., Mazin, D., Mirabal, N., Pedaletti, G., Renaud, M., de los Reyes, R., Torres, D.F., CTA Consortium: Prospects for observations of pulsars and pulsar wind nebulae with CTA. Astropart. Phys. 43, 287–300 (2013)

    Google Scholar 

  • Dubus, G., Cerutti, B.: What caused the GeV flare of PSR B1259-63? Astron. Astrophys. 557, A127 (2013)

    Google Scholar 

  • Dyks, J., Rudak, B.: Two-pole caustic model for high-energy light curves of pulsars. Astrophys. J. 598, 1201–1206 (2003)

    Article  ADS  Google Scholar 

  • Gallant, Y.A., van der Swaluw, E., Kirk, J.G., Achterberg, A.: Modeling plerion spectra and their evolution. In: Slane, P.O., Gaensler, B.M. (eds.) Neutron Stars in Supernova Remnants. Astronomical Society of the Pacific Conference Series, vol. 271, p. 99. Astronomical Society of the Pacific, San Francisco (2002)

    Google Scholar 

  • Giacche, S., Kirk, J.G.: submitted

    Google Scholar 

  • Gil, J., Mitra, D.: Vacuum gaps in pulsars and PSR J2144-3933. Astrophys. J. 550, 383–391 (2001)

    Google Scholar 

  • Guo, F., Li, H., Daughton, W., Liu, Y.-H.: Formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection. Phys. Rev. Lett. 113(15), 155005 (2014)

    Article  ADS  Google Scholar 

  • Harding, A.K.: Physics in strong magnetic fields near neutron stars. Science 251, 1033–1038 (1991)

    Article  ADS  Google Scholar 

  • Harding, A.K., Kalapotharakos, C.: Synchrotron self-compton emission from the Crab and other pulsars. Astrophys. J. 811, 63 (2015)

    Article  ADS  Google Scholar 

  • Harding, A.K., Tademaru, E., Esposito, L.W.: A curvature-radiation-pair-production model for gamma-ray pulsars. Astrophys. J. 225, 226–236 (1978)

    Article  ADS  Google Scholar 

  • Jaroschek, C.H., Treumann, R.A., Lesch, H., Scholer, M.: Fast reconnection in relativistic pair plasmas: analysis of particle acceleration in self-consistent full particle simulations. Phys. Plasmas 11, 1151–1163 (2004)

    Article  ADS  Google Scholar 

  • Kagan, D., Sironi, L., Cerutti, B., Giannios, D.: Relativistic magnetic reconnection in pair plasmas and its astrophysical applications. Space Sci. Rev. 191, 545–573 (2015)

    Article  ADS  Google Scholar 

  • Kalapotharakos, C., Kazanas, D., Harding, A., Contopoulos, I.: Toward a realistic pulsar magnetosphere. Astrophys. J. 749, 2 (2012)

    Article  ADS  Google Scholar 

  • Kennel, C.F., Coroniti, F.V.: Confinement of the Crab pulsar’s wind by its supernova remnant. Astrophys. J. 283, 694–709 (1984a)

    Article  ADS  Google Scholar 

  • Kennel, C.F., Coroniti, F.V.: Magnetohydrodynamic model of Crab nebula radiation. Astrophys. J. 283, 710–730 (1984b)

    Article  ADS  Google Scholar 

  • Kennel, C.F., Pellat, R.: Relativistic nonlinear plasma waves in a magnetic field. J. Plasma Phys. 15, 335–355 (1976)

    Article  ADS  Google Scholar 

  • Khangulyan, D., Aharonian, F.A., Bogovalov, S.V., Ribó, M.: Post-periastron gamma-ray flare from PSR B1259-63/LS 2883 as a result of comptonization of the cold pulsar wind. Astrophys. J. 752, L17 (2012)

    Google Scholar 

  • Kirk, J.G.: Particle acceleration in relativistic current sheets. Phys. Rev. Lett. 92(18), 181101 (2004)

    Article  ADS  Google Scholar 

  • Kirk, J.G., Skjæraasen, O.: Dissipation in poynting-flux-dominated flows: the σ-problem of the Crab pulsar wind. Astrophys. J. 591, 366–379 (2003)

    Article  ADS  Google Scholar 

  • Kirk, J.G., Skjæraasen, O., Gallant, Y.A.: Pulsed radiation from neutron star winds. Astron. Astrophys. 388, L29–L32 (2002)

    Article  ADS  Google Scholar 

  • Kirk, J.G., Lyubarsky, Y., Petri, J.: The theory of pulsar winds and nebulae. In: Becker, W. (ed.) Astrophysics and Space Science Library. Astrophysics and Space Science Library, vol. 357, p. 421. Springer, Berlin (2009)

    Google Scholar 

  • Komissarov, S.S.: Simulations of the axisymmetric magnetospheres of neutron stars. Mon. Not. R. Astron. Soc. 367, 19–31 (2006)

    Article  ADS  Google Scholar 

  • Kong, S.W., Cheng, K.S., Huang, Y.F.: Modeling the multiwavelength light curves of PSR B1259-63/LS 2883. II. The effects of anisotropic pulsar wind and doppler boosting. Astrophys. J. 753, 127 (2012)

    Google Scholar 

  • Krause-Polstorff, J., Michel, F.C.: Electrosphere of an aligned magnetized neutron star. Mon. Not. R. Astron. Soc. 213, 43P–49P (1985)

    Article  ADS  Google Scholar 

  • Krause-Polstorff, J., Michel, F.C.: Pulsar space charging. Astron. Astrophys. 144, 72–80 (1985)

    ADS  Google Scholar 

  • Kuiper, L., Hermsen, W., Cusumano, G., Diehl, R., Schönfelder, V., Strong, A., Bennett, K., McConnell, M.L.: The Crab pulsar in the 0.75–30 MeV range as seen by CGRO COMPTEL. A coherent high-energy picture from soft X-rays up to high-energy gamma-rays. Astron. Astrophys. 378, 918–935 (2001)

    Google Scholar 

  • Leung, G.C.K., Takata, J., Ng, C.W., Kong, A.K.H., Tam, P.H.T., Hui, C.Y., Cheng, K.S.: Fermi-LAT detection of pulsed gamma-rays above 50 GeV from the vela pulsar. Astrophys. J. 797, L13 (2014)

    Google Scholar 

  • Li, J., Spitkovsky, A., Tchekhovskoy, A.: Resistive solutions for pulsar magnetospheres. Astrophys. J. 746, 60 (2012)

    Article  ADS  Google Scholar 

  • Lyubarskii, Y.E.: A model for the energetic emission from pulsars. Astron. Astrophys. 311, 172–178 (1996)

    ADS  Google Scholar 

  • Lyubarsky, Y.E.: The termination shock in a striped pulsar wind. Mon. Not. R. Astron. Soc. 345, 153–160 (2003)

    Article  ADS  Google Scholar 

  • Lyubarsky, Y.E.: On the relativistic magnetic reconnection. Mon. Not. R. Astron. Soc. 358, 113–119 (2005)

    Article  ADS  Google Scholar 

  • Lyubarsky, Y., Kirk, J.G.: Reconnection in a striped pulsar wind. Astrophys. J. 547, 437–448 (2001)

    Article  ADS  Google Scholar 

  • Lyutikov, M.: Inverse compton model of pulsar high-energy emission. Mon. Not. R. Astron. Soc. 431, 2580–2589 (2013)

    Article  ADS  Google Scholar 

  • Lyutikov, M., Uzdensky, D.: Dynamics of relativistic reconnection. Astrophys. J. 589, 893–901 (2003)

    Article  ADS  Google Scholar 

  • Max, C., Perkins, F.: Strong electromagnetic waves in overdense plasmas. Phys. Rev. Lett. 27, 1342–1345 (1971)

    Article  ADS  Google Scholar 

  • Melatos, A., Melrose, D.B.: Energy transport in a rotation-modulated pulsar wind. Mon. Not. R. Astron. Soc. 279, 1168–1190 (1996)

    Article  ADS  Google Scholar 

  • Michel, F.C.: Rotating magnetosphere: a simple relativistic model. Astrophys. J. 180, 207–226 (1973)

    Article  ADS  Google Scholar 

  • Michel, F.C.: Rotating magnetospheres: an exact 3-D solution. Astrophys. J. 180, L133 (1973)

    Article  ADS  Google Scholar 

  • Michel, F.C.: Magnetic structure of pulsar winds. Astrophys. J. 431, 397–401 (1994)

    Article  ADS  Google Scholar 

  • Mochol, I., Kirk, J.G.: Propagation and stability of superluminal waves in pulsar winds. Astrophys. J. 771, 53 (2013)

    Article  ADS  Google Scholar 

  • Mochol, I., Kirk, J.G.: Radiative damping and emission signatures of strong superluminal waves in pulsar winds. Astrophys. J. 776, 40 (2013)

    Article  ADS  Google Scholar 

  • Mochol, I., Pétri, J.: Very high energy emission as a probe of relativistic magnetic reconnection in pulsar winds. Mon. Not. R. Astron. Soc. 449, L51–L55 (2015)

    Article  ADS  Google Scholar 

  • Muslimov, A.G., Harding, A.K.: Extended acceleration in slot gaps and pulsar high-energy emission. Astrophys. J. 588, 430–440 (2003)

    Article  ADS  Google Scholar 

  • Muslimov, A.G., Harding, A.K.: High-altitude particle acceleration and radiation in pulsar slot gaps. Astrophys. J. 606, 1143–1153 (2004)

    Article  ADS  Google Scholar 

  • Pétri, J.: The pulsar force-free magnetosphere linked to its striped wind: time-dependent pseudo-spectral simulations. Mon. Not. R. Astron. Soc. 424, 605–619 (2012)

    Article  ADS  Google Scholar 

  • Pétri, J.: Phase-resolved polarization properties of the pulsar striped wind synchrotron emission. Mon. Not. R. Astron. Soc. 434, 2636–2644 (2013)

    Article  ADS  Google Scholar 

  • Pétri, J.: Multipolar electromagnetic fields around neutron stars: exact vacuum solutions and related properties. Mon. Not. R. Astron. Soc. 450, 714–742 (2015)

    Article  ADS  Google Scholar 

  • Pétri, J.: General-relativistic force-free pulsar magnetospheres. Mon. Not. R. Astron. Soc. 455, 3779–3805 (2016)

    Article  ADS  Google Scholar 

  • Pétri, J.: Theory of pulsar magnetosphere and wind. ArXiv e-prints, Aug 2016

    Google Scholar 

  • Pétri, J., Kirk, J.G.: The polarization of high-energy pulsar radiation in the striped wind model. Astrophys. J. 627, L37–L40 (2005)

    Article  ADS  Google Scholar 

  • Pétri, J., Lyubarsky, Y.: Magnetic reconnection at the termination shock in a striped pulsar wind. Astron. Astrophys. 473, 683–700 (2007)

    Article  MATH  ADS  Google Scholar 

  • Pétri, J., Heyvaerts, J., Bonazzola, S.: Global static electrospheres of charged pulsars. Astron. Astrophys. 384, 414–432 (2002)

    Article  ADS  Google Scholar 

  • Petrova, S.A.: Axisymmetric force-free magnetosphere of a pulsar – II. Transition from the self-consistent two-fluid model. Mon. Not. R. Astron. Soc. 446, 2243–2250 (2015)

    Article  ADS  Google Scholar 

  • Petrova, S.A.: A novel look at the pulsar force-free magnetosphere. ArXiv e-prints, Aug 2016

    Google Scholar 

  • Philippov, A.A., Spitkovsky, A., Cerutti, B.: Ab initio pulsar magnetosphere: three-dimensional particle-in-cell simulations of oblique pulsars. Astrophys. J. 801, L19 (2015)

    Article  ADS  Google Scholar 

  • Porth, O., Komissarov, S.S., Keppens, R.: Solution to the sigma problem of pulsar wind nebulae. Mon. Not. R. Astron. Soc. 431, L48–L52 (2013)

    Article  ADS  Google Scholar 

  • Rees, M.J., Gunn, J.E.: The origin of the magnetic field and relativistic particles in the Crab nebula. Mon. Not. R. Astron. Soc. 167, 1–12 (1974)

    Article  ADS  Google Scholar 

  • Romani, R.W., Yadigaroglu, I.-A.: Gamma-ray pulsars: emission zones and viewing geometries. Astrophys. J. 438, 314–321 (1995)

    Article  ADS  Google Scholar 

  • Rudak, B., et al., for the HESS II Collaboration: Pulsations from the vela pulsar down to 20 GeV with H.E.S.S. II. (2015)

    Google Scholar 

  • Ruderman, M.A., Sutherland, P.G.: Theory of pulsars – polar caps, sparks, and coherent microwave radiation. Astrophys. J. 196, 51–72 (1975)

    Article  ADS  Google Scholar 

  • Scharlemann, E.T., Wagoner, R.V.: Aligned rotating magnetospheres. General analysis. Astrophys. J. 182, 951–960 (1973)

    Article  ADS  Google Scholar 

  • Sironi, L., Spitkovsky, A.: Acceleration of particles at the termination shock of a relativistic striped wind. Astrophys. J. 741, 39 (2011)

    Article  ADS  Google Scholar 

  • Sironi, L., Spitkovsky, A.: Relativistic reconnection: an efficient source of non-thermal particles. Astrophys. J. 783, L21 (2014)

    Article  ADS  Google Scholar 

  • Sironi, L., Giannios, D., Petropoulou, M.: Plasmoids in relativistic reconnection, from birth to adulthood: first they grow, then they go. Mon. Not. R. Astron. Soc. 462, 48–74 (2016)

    Article  ADS  Google Scholar 

  • Spitkovsky, A.: Electrodynamics of pulsar magnetospheres. In: Camilo, F., Gaensler, B.M. (eds.) Young Neutron Stars and Their Environments. IAU Symposium, vol. 218, p. 357. Astronomical Society of the Pacific, San Francisco, CA (2004)

    Google Scholar 

  • Spitkovsky, A.: Time-dependent force-free pulsar magnetospheres: axisymmetric and oblique rotators. Astrophys. J. 648, L51–L54 (2006)

    Article  ADS  Google Scholar 

  • Sturrock, P.A.: A model of pulsars. Astrophys. J. 164, 529 (1971)

    Article  ADS  Google Scholar 

  • Tam, P.H.T., Huang, R.H.H., Takata, J., Hui, C.Y., Kong, A.K.H., Cheng, K.S.: Discovery of GeV γ-ray Emission from PSR B1259-63/LS 2883. Astrophys. J. 736, L10 (2011)

    Google Scholar 

  • Tam, P.H.T., Li, K.L., Takata, J., Okazaki, A.T., Hui, C.Y., Kong, A.K.H.: High-energy observations of PSR B1259-63/LS 2883 through the 2014 periastron passage: connecting X-rays to the GeV flare. Astrophys. J. 798, L26 (2015)

    Google Scholar 

  • Tchekhovskoy, A., Spitkovsky, A., Li, J.G.: Time-dependent 3D magnetohydrodynamic pulsar magnetospheres: oblique rotators. Mon. Not. R. Astron. Soc. 435, L1–L5 (2013)

    Article  ADS  Google Scholar 

  • Timokhin, A.N., Harding, A.K.: On the polar cap cascade pair multiplicity of young pulsars. Astrophys. J. 810, 144 (2015)

    Article  ADS  Google Scholar 

  • Usov, V.V.: Wave zone structure of NP 0532 and infrared radiation excess of Crab nebula. Astrophys. Space Sci. 32, 375–377 (1975)

    Article  ADS  Google Scholar 

  • Viganò, D., Torres, D.F.: Modelling of the γ-ray pulsed spectra of Geminga, Crab, and Vela with synchro-curvature radiation. Mon. Not. R. Astron. Soc. 449, 3755–3765 (2015)

    Article  ADS  Google Scholar 

  • Weisskopf, M.C., Hester, J.J., Tennant, A.F., Elsner, R.F., Schulz, N.S., Marshall, H.L., Karovska, M., Nichols, J.S., Swartz, D.A., Kolodziejczak, J.J., O’Dell, S.L.: Discovery of spatial and spectral structure in the X-ray emission from the Crab nebula. Astrophys. J. 536, L81–L84 (2000)

    Article  ADS  Google Scholar 

  • Werner, G.R., Uzdensky, D.A., Cerutti, B., Nalewajko, K., Begelman, M.C.: The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasmas. Astrophys. J. 816, L8 (2016)

    Article  ADS  Google Scholar 

  • Xing, Y., Wang, Z.: Fermi study of gamma-ray millisecond pulsars: the spectral shape and pulsed 25–200 GeV emission from J0614-3329. ArXiv e-prints, Apr 2016

    Google Scholar 

  • Zenitani, S., Hoshino, M.: The generation of nonthermal particles in the relativistic magnetic reconnection of pair plasmas. Astrophys. J. 562, L63–L66 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank Tomasz Rembiasz and Jérôme Pétri for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwona Mochol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mochol, I. (2017). Pulsar Striped Winds. In: Torres, D. (eds) Modelling Pulsar Wind Nebulae. Astrophysics and Space Science Library, vol 446. Springer, Cham. https://doi.org/10.1007/978-3-319-63031-1_7

Download citation

Publish with us

Policies and ethics