Skip to main content
Log in

Raman, FT-IR and dielectric studies of PZT 40/60 films deposited by MOD technology

  • Papers
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ferroelectric Pb(Zr0.4Ti0.6) O3 (PZT 40/60) thin films with uniform composition have been fabricated using the metallo-organic precursor compounds lead di-ethylhexanoate Pb(C7H15COO)2, titanium di-methoxy-di-neodecanoate Ti(OCH3)2(C9H19COO)2 and zirconium octoate Zr(C7H15COO)4. These metallo-organic precursors were stored for more than four years and are very stable in ambient conditions, compared to sol-gel solutions. The structural development of these films under different annealing temperatures was systematically studied using X-ray diffraction, FT-IR spectroscopy and Raman scattering. The results show that the overlapping of (h 0 0) and (0 0 I) peaks of the PZT 40/60 films in X-ray diffraction patterns, mainly due to the small grain sizes in films, makes it very difficult to distinguish individual diffraction peaks and to identify the phases. In FT-IR measurements, the intensity of Zr/TiO6 metal-oxygen octahedral vibrational modes becomes stronger with increasing annealing temperatures, while the FT-IR spectral peaks of vibrations of the residual carbon ligands (COO) finally disappear at high temperatures, showing that FT-IR spectroscopy is a good way to monitor the growth of the perovskite phase in PZT 40/60 films. Raman measurements undoubtedly reveal the Raman spectra of these PZT 40/60 films in the tetragonal phase field, demonstrating that Raman spectroscopy is an effective tool to identify structures, especially in the case of thin films having small grains. The values of high dielectric constant and the total remanent polarization obtained by ferroelectric pulse measurements show that the PZT film is a suitable material for non-volatile random access memory and dynamic random access memory applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. SCOTT and C. A. PAZ de ARAIYO, Science, 246 (1989) 1400.

    Google Scholar 

  2. J. T. EVANS and R. WOMACK, IEEE J. Solid-State Circuits, 23 (1988) 1171.

    Google Scholar 

  3. R. MOAZZAMI and C. HU, IEEE Trans. Electronic Devices, 39 (1992) 2044.

    Google Scholar 

  4. R. W. VEST and W. ZHU, Ferroelectrics, 119 (1991) 61.

    Google Scholar 

  5. S. D. BERNSTEIN, T. Y. WONG, Y. KISLER and R. W. TUSTISON, J. Mater. Res., 8(1993) 12.

    Google Scholar 

  6. J. F. CHANG and S. B. DESU, ibid. J. Mater. Res. 9 (1994) 955.

  7. B. A. TUTTLE, T. J. HEADLEY, B. C. BUNKER, R. W. SCHWARTZ, T. J. ZENDER, C. L. H, D. C. GOODNOW, R. J. TISSOT and J. MICHAEL, ibid. J. Mater. Res. 7 (1992) 1876.

  8. G. H. HEARTLING, Chapter 3 Piezoelectric and Electrooptic Ceramics, in “Ceramic Materials for Electronics”, edited by R. C. Buchanan, Marcel Dekker, New York, 1986, p 184.

    Google Scholar 

  9. R. CUPPENS, P. K. LARSEN and G. A. C. M. SPIERINGS, Microelectronic Engineering, 19 (1992) 245.

    Google Scholar 

  10. M. OIKAWA and K. TODA, Appl. Phys. Lett., 29 (1976) 491.

    Google Scholar 

  11. R. CASTELLANO, Ferroelectrics, 28 (1980) 387.

    Google Scholar 

  12. X. CHEN, A. I. KINGON, L. MANTESE, O. AUCIELLO, and K. Y. HSIEH, Int Ferroelectrics, 3 (1993) 355.

    Google Scholar 

  13. C. H. PENG and S. B. DESU, Appl. Phys. Lett., 61 (1992) 1.

    Google Scholar 

  14. K. D. BUDD, S. K. DEY and D. A. PAYNE, Proc. Brit. Ceram. Soc., 36 (1985) 107.

    Google Scholar 

  15. W. ZHU, R. W. VEST, M. S. TSE, M. K. RAO and Z. Q. LIU, J. Mater. Sc Materials in Electronics, 5 (1994) 173.

    Google Scholar 

  16. C. Y. KUO, Solid State Technology, February (1974) pp49.

  17. R. W. VEST, Ferroelectrics, 102 (1990) 53.

    Google Scholar 

  18. G. M. VEST and S. SINGARAM, Mat. Res. Soc. Symp. Proc., 60 (1986) 35.

    Google Scholar 

  19. JAFFE, R. S. ROTH and S. MARZULLO, J. Res. NBS, 55 (1955) 239.

    Google Scholar 

  20. G. SHIRANE and K. SUZUKI, J. Phys. Soc. Jpn. 7 (1952) 333.

    Google Scholar 

  21. G. SHIRANE, K. SUZUKI, and A. TAKEDA, ibid. J. Phys. Soc. Jpn. 7 (1952) 12.

  22. S. Fushimi and T. Ikeda, J. Am. Ceram. Soc. 50 (1967) 129.

    Google Scholar 

  23. G. H. HEARTLING and C. E. LAND, ibid. J. Am. Ceram. Soc. 54 (1971) 1.

  24. C. K. KWOK and B. DESU, Appl. Phys. Lett. 60 (1992) 1430.

    Google Scholar 

  25. L. A. BURSILL and K. G. BROOKS, J. Appl. Phys. 75 (1994) 4501.

    Google Scholar 

  26. B. D. CULLITY, “Elements of X-Ray Diffraction”, 2nd Edn. (Addison-Wesley, Menlo Park, USA, 1978).

    Google Scholar 

  27. L. H. SCHWARTZ and J. B. COHEN, “Diffraction From Materials” (Academic Press, New York, 1977).

    Google Scholar 

  28. R. E. RIMAN, D. M. HAALAND, C. J. M. NORTHRUP Jr, H. K. BOWEN and A. BLEIER, Mater. Res. Soc. Symp. 23 (1984) 233.

    Google Scholar 

  29. N. T. MCDEVITT and W. L. BAUN, Spectrochim. Acta 70 (1964) 799.

    Google Scholar 

  30. V. ZELEZNY, P. SIMON, F. GERVAIS and T. KALA, Mater. Res. Bull. 22 (1987) 1695.

    Google Scholar 

  31. C. T. LIN, L. LI, J. S. WEBB, R. A. Lipeles and M. S. LEUNG, Integrated Ferroelectrics 3 (1993) 333.

    Google Scholar 

  32. S. LI, R. A. CONDRATE and R. M. SPRIGGS, J. Can. Ceram. Soc. 57 (1988) 61.

    Google Scholar 

  33. I. TAGUCHI, A. PIGNOLET, L. WANG, M. PROCTOR, F. LEVY and P. E. SCHMID, J. Appl. Phys. 73 (1993) 394.

    Google Scholar 

  34. G. BURNS and B. A. SCOTT, Phys. Rev. Lett. 25 (1970) 1191.

    Google Scholar 

  35. W. J. BRYA, ibid. Phys. Rev. Lett. 26 (1971) 1114.

  36. Z. C. FENG, B. S. KWAK, A. ERBIL and L. A. BOATNER, Appl. Phys. Lett. 64 (1994) 2350.

    Google Scholar 

  37. J. A. SANIURJO, E. L. CRUZ and G. BURNS, Phys. Rev. B 28 (1983) 7260.

    Google Scholar 

  38. A. LURIO and G. BURNS, J. Appl. Phys. 45 (1974) 1986.

    Google Scholar 

  39. M. H. LEE and B. C. CHOI, J.Am. Ceram. Soc. 74 (1991) 2309.

    Google Scholar 

  40. D. R. TALLANT, R. W. SCHAWRTZ, B. A. TUTTLE, S. C. EVERIST and B. C. TAFOYA, Ferroelectrics, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, W., Liu, Z.Q., Tse, M.S. et al. Raman, FT-IR and dielectric studies of PZT 40/60 films deposited by MOD technology. J Mater Sci: Mater Electron 6, 369–374 (1995). https://doi.org/10.1007/BF00144636

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00144636

Keywords

Navigation