Skip to main content
Log in

Hemodynamic effects of the D- and L-isomers of sotalol on normal myocardium

  • Hemodynamics
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

This study investigated the hemodynamic effects of the D-isomer of sotalol in open-chest rats and compared this to the action of the L-isomer and the racemic DL-sotalol. Hemodynamic and additional isovolumic maximum measurements were registered at the end and 5 minutes after an intravenous infusion period of 7 minutes. DL- (1 and 2 mg/kg) and L-sotalol (2 mg/kg) caused a significant reduction in the heart rate and in the indices of contractility during and after infusion. D-sotalol (2, 4, and 8 mg/kg), however, decreased the contractility only transiently after very high doses at high plasma concentrations. Thus, while the effects of the beta-blocking L-isomer were comparable to those of DL-sotalol, only a slight and transient hemodynamic action of comparable doses of D-sotalol was found. These findings may be of significance for the proposed use of the D-isomer as a class-III antiarrhythmic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh BN, Vaughan Williams EM. A third class of antiarrhythmic action. Effects on atrial and ventricular intracellular potentials and other pharmacological actions on cardiac muscle of MJ 1999 and AH 3474. Br J Pharmacol 1970; 39:675–689.

    Google Scholar 

  2. Manley BS, Alexopoulos D, Robinson GJ, Cobbe SM. Subsidiary class III effects of betablockers? A comparison of atenolol, metoprolol, nadolol, oxprenolol and sotalol. Cardiovasc Res 1986;20:705–709.

    Google Scholar 

  3. Singh BN, Deedwania P, Nademanee K, et al. Sotalol. A review of its pharmacokinetic properties and therapeutic use. Drugs 1987;34:311–349.

    Google Scholar 

  4. Josephson MA, Singh BN. Hemodynamic effects of class III antiarrhythmic agents. In: Singh BN, ed. Control of cardiac arrhythmias by lengthening repolarisation. Mount Kisco, NY: Futura Publishing, 1988:153–173.

    Google Scholar 

  5. Parmley WW, Rabinowitz B, Chuck L, et al. Comparative effects of sotalol and propranolol on contractility of papillary muscles and adenyl cyclase activity of myocardial extracts of cat. J Clin Pharmacol 1972;12:127.

    Google Scholar 

  6. Tande PM, Refsum H. Class-III antiarrhythmic action linked with positive inotropy; effects of the d-and l-isomer of sotalol on isolated rat atria at threshold and suprathreshold stimulation. Pharmacol Toxicol 1988;62:272–277.

    Google Scholar 

  7. Kaumann AJ, Olson CB. Temporal relation between longlasting aftercontractions and action potentials in cat papillary muscle. Science 1986;161:293–295.

    Google Scholar 

  8. Mahler F, Ross JJr., O'Rourke RA, Covell JW. Effects of changes in preload, afterload and inotropic state on ejection and isovolumic phase measures of contractility in the conscious dog. Am J Cardiol 1975;35:626–634.

    Google Scholar 

  9. Schmidt HD, Hoppe H, Müller KD. The effect of changes in cardiac frequency on left and right ventricular dP/dtmax at different contractile states of the myocardium. Eur J Appl Physiol 1797;42:183–198.

    Google Scholar 

  10. Hoffmeister HM, Betz R, Fiechtner H, Seipel L. Myocardial effects of inosine. Cardiovasc Res 1987;21:65–71.

    Google Scholar 

  11. Hoffmeister HM, Hepp A, Seipel L. Negative inotropic effect of class-I-antiarrhythmic drugs: Comparison of flecainide with disopyramide and quinidine. Eur Heart J 1987; 8:1126–1132.

    Google Scholar 

  12. Hoffmeister HM, Pflug A, Krämer B, Seipel L. Circulatory and myocardial effects of different sodium antagonistic drugs in comparison to the calcium antagonist verapamil. Drug Res 1989;39(II):1425–1429.

    Google Scholar 

  13. Hoffmeister HM, Storf R, Seipel L. Effects of graded intensity of oxygen deficiency on function and energy metabolism in post-ischaemic myocardium. Cardiovasc Res 1988;22: 881–888.

    Google Scholar 

  14. Wallenstein S, Zucker CL, Fleiss JL. Some statistical methods useful in circulation research. Circ Res 1980;47:1–9.

    Google Scholar 

  15. Touboul P, Atallah G, Kirkorian G, et al. Clinical electrophysiology of intravenous sotalol, a betablocking drug with class III antiarrhythmic properties. Am Heart J 1984; 107:888–895.

    Google Scholar 

  16. Somani P, Watson DL. Antiarrhythmic activity of the dextro- and levorotatory isomers of 4-(2-isopropylamino-1-hydroxy-ethyl) methanesulfonanilide (MJ 1999). J Pharmacol Exp Ther 1968;194:317–325.

    Google Scholar 

  17. Kato R, Ikeda N, Yabek SM, et al. Electrophysiologic effects of the levo- and dextrorotatory isomers of sotalol in isolated cardiac muscle and their in vivo pharmacokinetics. J Am Coll Cardiol 1986;7:116–125.

    Google Scholar 

  18. McComb MJ, McGovern B, McGowan JB, et al. Electrophysiologic effects of d-sotalol in humans. J Am Coll Cardiol 1987;10:211–217.

    Google Scholar 

  19. Burkhardt D, Pfisterer M, Hoffmann A, et al. Effects of the beta-adrenoceptor-blocking agent sotalol on ventricular arrhythmias in patients with chronic ischemic heart disease. Cardiology 1983;70:114–121.

    Google Scholar 

  20. Lynch JJ, Wilbur DJ, Montgomery DG, et al. Antiarrhythmic and antifibrillatory actions of the levo- and dextrorotatory isomers of sotalol. J Cardiovasc Pharmacol 1984;6: 1132–1141.

    Google Scholar 

  21. Lynch JJ, Coskey LA, Montgomery DG, et al. Prevention of ventricular fibrillation by dextrorotatory sotalol in a conscious canine model of sudden coronary death. Am Heart J 1985;109:949.

    Google Scholar 

  22. Driscoll P. The normal rat electrocardiogram. In: Budden R, et al, eds. The rat electrocardiogram in pharmacology and toxicology. Oxford: Pergamon Press, 1981.

    Google Scholar 

  23. Osborne BE. The electrocardiogram of the rat. In: Budden R, et al, eds. The rat electrocardiogram in pharmacology and toxicology. Oxford: Pergamon Press, 1981.

    Google Scholar 

  24. Fitzgerald JD, Wale JL, Austin M. The hemodynamic effects of (±)-propranolol, dextropranolol, oxprenolol, practolol and sotalol in anaesthetised dogs. Eur J Pharmacol 1972;17:123–134.

    Google Scholar 

  25. Mahmarian JJ, Verani MS, Hohmann T, et al. The hemodynamic effects of sotalol and quinidine: Analysis by use of rest and exercise gated radionuclide angiography. Circulation 1987;76:324–331.

    Google Scholar 

  26. Carlsson L, Almgren O, Duker G. Electrophysiologic and hemodynamic evaluation of a novel class-III antiarrhythmic agent, H 234/09, in the anesthetized dog—comparison with quinidine and D-sotalol. Eur Heart J 1990;11:441.

    Google Scholar 

  27. Hoffmeister HM, Seipel L. Vergleich der hämodynamischen Wirkungen von D-Sotalol und D, L-Sotalol. Klin Wochenschr 1988;66:451–454.

    Google Scholar 

  28. Singh SN, Cohen A, Chen Y, et al. Sotalol for refractory sustained ventricular tachycardia and nonfatal cardiac arrest. Am J Cardiol 1988;62:399–402.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmeister, H.M., Beyer, M. & Seipel, L. Hemodynamic effects of the D- and L-isomers of sotalol on normal myocardium. Cardiovasc Drug Ther 5, 1027–1033 (1991). https://doi.org/10.1007/BF00143531

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00143531

Key words

Navigation