Skip to main content
Log in

Tierexperimentelle untersuchungen zur rolle von entzündungsmediatoren bei der hornhautneovaskularisation

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Experimental investigations concerning the role of inflammatory compounds in corneal neovascularization.

Natural and synthetic inflammatory compounds were implanted in the corneas of rabbits to clarify the question whether corneal neovascularization is induced by stromal edema alone, or by neovascular mediators. It could be demonstrated that prostaglandin E1 and E2 have an angiogenetic capacity, whereas their precursor (arachidonic acid) as well as PGA1, A2, B2, I2 and Thromboxan A2 were inactive in this regard.

Histology showed that corneal neovascularization is always accompanied by the invasion of polymorphonuclear leukocytes. Corneal edema in the beginning of vascularization can be explained by the activities of PGE (vasodilation, increase of vascular permeability, liberation of histamine). The implantation of lipoxygenase-dependent arachidonic acid compounds (5-HETE, Leukotriene B4) demonstrated that these mediators share in the process of neovascularization by inducing the chemotaxis. The above mentioned activities of prostaglandins and leukotrienes could also be demonstrated following penetrating keratoplasty and alkali burns of the anterior segment inducing extensive corneal neovascularization. An analysis of the prostaglandin- and leukotriendependent mechanisms could be achieved by selective PG- and LT- inhibitors. Radioimmunoassays showed a definite correlation between the concentrations of PGE and the amount of neovascularization following alkali burns. The results of our research lead to the following scheme of pathophysiology of corneal neovascularization: hypoxic, chemical, thermic and mechanical alterations of the cornea induce an activation of corneal cytomembranes, thus initiating (1) the cyclooxygenase-dependent synthesis of prostaglandins with consecutive vasodilation and increase of vascular permeability as well as histamine liberation resulting in corneal edema; on the other hand, prostaglandins proved to have a minimal chemotactic activity; (2) the lipoxygenase-dependent synthesis of leukotrienes inducing chemotaxis and diapedesis of polymorphonuclear leukocytes into the corneal stroma. These inflammatory cells are then the main source of newly synthesized leukotrienes maintaining the chemotaxis, and prostaglandins with angiogenetic activity. Cyclooxygenase- and lipoxygenase- inhibitors can inhibit these activities at two different levels, leading to an approach of successful therapy of corneal dieases inducing neovascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literaturverzeichnis

  • Ahuja OP and Nema HV (1966) Experimental corneal vascularization and its management. Amer J Ophthal 62:707–710

    Article  CAS  PubMed  Google Scholar 

  • Alberth A (1961) Verhinderung einer Vascularisation der transplantierten Hornhaut mittels peroral verabreichten Prednisolons. Graefes Arch Ophthal 163:562–574

    Article  CAS  Google Scholar 

  • Almeida AP, Bayer BM, Horakova Z and Beaven MA (1980) Influence of indomethacin and other anti-inflammatory drugs on mobilization and production of neutrophils - studies with carrageenan-induced inflammation in rats. J Pharmacol Exp Ther 214:74–79

    CAS  PubMed  Google Scholar 

  • Ashton N, Cook C and Langham M (1951) Effect of cortisone on vascularization and opacification of the cornea induced by alloxan. Brit J Ophthal 35:718–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashton N, Cook C (1953) Mechanisms of corneal vascularization. Brit J Ophthal 37:193–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashton N (1957) Retinal vascularization in health and disease. Amer J Ophthal 44:7–17

    Article  CAS  PubMed  Google Scholar 

  • Ashton N (1966) Oxygen and the growth and development of retinal vessels. Amer J Ophthal 62:412–435

    Article  CAS  PubMed  Google Scholar 

  • Auerbach R and Sidky YA (1979) Nature of the stimulus leading to lymphocyte-induced angiogenesis. J Immunol 123:751–754

    CAS  PubMed  Google Scholar 

  • Baum JL and Martola E-L (1968) Corneal edema and corneal vascularization. Amer J Ophthal 65:881–884

    Article  CAS  PubMed  Google Scholar 

  • BenEzra D (1978) Neovasculogenic ability of prostaglandins, growth factors, and synthetic chemoattractants. Amer J Ophthal 86:455–461

    Article  CAS  PubMed  Google Scholar 

  • BenEzra D (1979a) Neovasculogenesis. Triggering factors and possible mechanisms. Surv Ophthal 24:167–176

    Article  Google Scholar 

  • BenEzra D (1979b) Possible mediation of vasculogenesis by products of immune reaction. In: AM Silverstein and GR O'Connor: Immunology and immunopathology of the eye. New York, Masson, p 315–318

    Google Scholar 

  • BenEzra D (1981) Neovascularization, a unitarian phenomenon. Docum Ophthal Proc Ser 25:125–131

    Article  Google Scholar 

  • Ben-Zvi A, Rodrigues M, Gery I and Schiffmann E (1981a) Induction of inflammation by synthetic mediators. Proceedings ‘Immunology of the eye; Workshop: III’ London, IRL-Press, p 245–258

    Google Scholar 

  • Ben-Zvi A, Rodrigues MM, Gery I and Schiffmann E (1981b) Induction of ocular inflammation by synthetic mediators. Arch Ophthal 99:1436–1444

    Article  CAS  PubMed  Google Scholar 

  • Berman M, Winthrop S, Ausprunk D, Rose J, Langer R and Gage J (1982) Plasminogen activator (urokinase) causes vascularization of the cornea. Invest Ophthal Vis Sci 22:191–199

    CAS  PubMed  Google Scholar 

  • Bessière E and Teulières J (1951) Note sur la vascularisation expérimentale de la cornée. Arch Ophtal (Paris) NS 11:268–271

    Google Scholar 

  • Bhattacherjee P and Eakins KE (1974a) Inhibition of the prostaglandin synthetase systems in ocular tissues by indomethacin. Brit J Pharmacol 50:227–230

    Article  CAS  Google Scholar 

  • Bhattacherjee P and Eakins KE (1974b) A comparison of the inhibitory activity of compounds on ocular prostaglandin biosynthesis. Invest Ophthal 13:967–972

    CAS  PubMed  Google Scholar 

  • Bhattacherjee P (1977) Stimulation of prostaglandin synthetase activity in inflammed ocular tissue of the rabbit. Exp Eye Res 24:215–216

    Article  CAS  PubMed  Google Scholar 

  • Bhattacherjee P, Kulkarni PS and Eakins KE (1979) Metabolism of arachidonic acid in rabbit ocular tissues. Invest Ophthal Vis Sci 18:172–178

    CAS  PubMed  Google Scholar 

  • Bhattacherjee P (1980) Prostaglandins and inflammatory reactions in the eye. Meth Find Exp Clin Pharmacol 2:17–31

    CAS  Google Scholar 

  • Bhattacherjee P, Hammond B, Salmon JA, Stepney R and Eakins KE (1981) Chemotactic response to some arachidonic acid lipoxygenase products in the rabbit eye. Europ J Pharmacol 73:21–28

    Article  CAS  Google Scholar 

  • Bito LZ and Baroody RA (1982) The penetration of exogenous prostaglandin and arachidonic acid into, and their distribution within, the mammalian eye. Curr Eye Res 1:659–669

    Article  CAS  Google Scholar 

  • Blassmann K and Neuhann Th (1982) Weiche Kontaktlinsen als auslösender Faktor für eine Hornhautvaskularisation vom Limbus her. In: W Doden: Limbusprobleme. Stuttgart, Enke, p 83–91

    Google Scholar 

  • Borgeat P and Samuelsson B (1979a) Transformation of arachidonic acid by rabbit polymorphonuclear leukocytes. Formation of a novel dihydroxyeicosatetraenoic acid. J Biol Chem 254:2643–2646

    CAS  PubMed  Google Scholar 

  • Borgeat P and Samuelsson B (1979b) Arachidonic acid metabolism in polymorphonuclear leukocytes: unstable intermediate in formation of dihydroxy acids. Proc Nat Acad Sci 76:3213–3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borgeat P and Samuelsson B (1979c) Arachidonic acid metabolism in polymorphonuclear leukocytes: effects of ionophore A 23187. Proc Nat Acad Sci 76:2148–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borgeat P and Sirois P (1981) Leukotrienes: a major step in the understanding of immediate hypersensitivity reactions. J Med Chem 24:121–126

    Article  CAS  PubMed  Google Scholar 

  • Bray MA, Cunningham FM, Ford-Hutchinson AW and Smith MJH (1981) Leukotriene B4: a mediator of vascular permeability. Brit J Pharmacol 72:483–486

    Article  CAS  Google Scholar 

  • Bray MA, Ford-Hutchinson AW and Smith MJH (1981) Leukotriene B4: an inflammatory mediator in vivo. Prostaglandins 22:213–222

    Article  CAS  PubMed  Google Scholar 

  • Brem H and Folkman J (1975) Inhibition of tumor angiogenesis mediated by cartilage. J Exp Med 141:427–439

    Article  CAS  PubMed  Google Scholar 

  • Brem S, Preis I, Langer R, Brem H, Folkman J and Patz A (1977) Inhibition of neovascularization by an extract derived from vitreous. Amer J Ophthal 84:323–328

    Article  PubMed  Google Scholar 

  • Brune K (1980) Persönliche Mitteilung

  • Busse W-D, Herrmann K, Mardin M and Schramm M (1981) AGEPC-induzierte intravasale Plättchenaktivierung als Thrombozytopeniemodell. In: G Blümel and S Haas: Mikrozirkulation und Prostaglandinstoffwechsel. Stuttgart, Schattauer, p 77–84

    Google Scholar 

  • Busse W-D (1982) Persönliche Mitteilung

  • Campbell FW and Michaelson IC (1949) Blood-vessel formation in the cornea. Brit J Ophthal 33:248–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camussi G, Bussolino F, Tetta C, Brusca R and Ragni R (1980) The binding of plateletactivating factor (PAF) to polymorphonuclear neutrophils (PMN) as a trigger for the immune-induced PMN aggregation. Panminerva medica 22:1–5

    CAS  PubMed  Google Scholar 

  • Chayakul V and Reim M (1982a) The enzymatic activities in the alkali-burnt rabbit cornea. Graefe's Arch klin exp Ophthal 218:145–148

    Article  CAS  Google Scholar 

  • Chayakul V and Reim M (1982b) Enzymatic activity of β-N-acetylglucosaminidase in the alkali-burned rabbit cornea. Graefe's Arch klin exp Ophthal 218:149–152

    Article  CAS  Google Scholar 

  • Chen C-H and Chen SC (1980) Angiogenetic activity of vitreous and retinal extract. Invest Ophthal Vis Sci 19:596–602

    CAS  PubMed  Google Scholar 

  • Cogan DG (1974a) Vascularization of the cornea. Its experimental induction by small lesions and a new theory of its pathogenesis. Arch Ophthal 41:406–416

    Article  Google Scholar 

  • Cogan DG (1974b) Untersuchungen zur klinischen Physiologie der Hornhaut: Die Beziehungen zwischen Hornhautquellung, Hornhautepithelödem, Keratopathia bullosa und interstitieller Vascularisation. Ber Dtsch Ophthal Ges 54:6–13

    Google Scholar 

  • Cogan DG (1962) Corneal vascularization. Invest Ophthal 1:253–261

    Google Scholar 

  • Collin HB (1973) Limbal vascular response prior to corneal vascularization. Exp Eye Res 16:443–455

    Article  CAS  PubMed  Google Scholar 

  • Cooper CA, Bergamini MVW and Leopold IH (1980) Use of flurbiprofen to inhibit corneal neovascularization. Arch Ophthal 98:1102–1105

    Article  CAS  PubMed  Google Scholar 

  • Cunningham FM and Smith MJH (1982) Leukotriene B4: biological activities and the cytoskeleton. Brit J Pharmacol 75:383–387

    Article  CAS  Google Scholar 

  • Czarnetzki BM (1981) ECF, an eosinophil and neutrophil lipid chemotactic factor. Behring Inst Mitt 68:82–91

    CAS  Google Scholar 

  • Danon A and Assouline G (1978) Inhibition of prostaglandin biosynthesis by corticosteroids requires RNA and protein synthesis. Nature 273:552–554

    Article  CAS  PubMed  Google Scholar 

  • Davies P and Bonney R (1981) Some basic mechanisms in inflammatory responses. Proceedings ‘Immunology of the eye; Workshop III’. London, IRL-Press, p 273–290

    Google Scholar 

  • Davies P, Bonney R, Humes J and Kuehl F (1981) The mechanism of action of antiinflammatory drugs at the cellular level. Proceedings ‘Immunology of the eye; Workshop III’ London. IRL-Press, p 411–423

    Google Scholar 

  • Demopoulos CA, Pinckard RN and Hanahan DJ (1979) Platelet-activating factor. Evidence for 1-o-alkyl-sn-glyceryl-3-phosphorylcholine as the active component (A new class of lipid chemical mediators). J Biol Chem 254:9355–9358

    CAS  PubMed  Google Scholar 

  • Deutsch TA and Hughes WF (1979) Suppressive effects of indomethacin on thermally induced neovascularization of rabbit corneas. Amer J Ophthal 87:536–540

    Article  CAS  PubMed  Google Scholar 

  • Doggart JH (1950) Vascularization of the cornea. Brit J Ophthal 35:160–167

    Article  Google Scholar 

  • Dohlman CH (1965) Corneal edema und vascularization. In: JH King: The cornea world congress. London, Butterworths, p 80–95

    Google Scholar 

  • Duffin RM, Weissman OD, Glasser DB and Pettit TH (1982) Flurbiprofen in the treatment of corneal neovascularization induced by contact lenses. Amer J Ophthal 93: 607–614

    Article  CAS  PubMed  Google Scholar 

  • Duke-Elder S and Leigh AG (1965) Corneal vascularization. In: S Duke-Elder: System of ophthalmology, Vol. VIII, Part 2. London, Kimpton, p 676–691

    Google Scholar 

  • Edelhauser HF, Van Horn DL and Records RE (1979) Cornea and sclera. In: RE Records: Physiology of the human eye and visual system. Hagerstown, Harper & Row p 68–97

    Google Scholar 

  • Eisenstein R, Goren SB, Schumacher B and Choromokos E (1979) The inhibition of corneal vascularization with aortic extracts in rabbits. Amer J Ophthal 88:1005–1012

    Article  CAS  PubMed  Google Scholar 

  • Eliason JA (1978) Leukocytes and experimental corneal vascularization. Invest Ophthal Vis Sci 17:1087–1095

    CAS  PubMed  Google Scholar 

  • Epstein RJ and Hughes WF (1981) Lymphocyte-induced corneal neovascularization: a morphologic assessment. Invest Ophthal Vis Sci 21:87–94

    CAS  PubMed  Google Scholar 

  • Estensen RD, White JG and Holmes B (1974) Specific degranulation of human polymorpho-nuclear leukocytes. Nature 248:347–348

    Article  CAS  PubMed  Google Scholar 

  • Ey RC, Hughes WF, Bloome MA and Tallman CB (1968) Prevention of corneal vascularization. Amer J Ophthal 66:1118–1131

    Article  CAS  PubMed  Google Scholar 

  • Federman JL, Brown GC, Felberg NT and Felton SM (1980) Experimental ocular angiogenesis. Amer J Ophthal 89:231–237

    Article  CAS  PubMed  Google Scholar 

  • Feinmark SJ, Lindgren JA, Claesson H-E, Malmsten C and Samuelsson B (1981) Stimulation of human leukocyte degranulation by leukotriene B4 and its ω-oxidized metabolites. FEBS letters 136:141–144

    Article  CAS  PubMed  Google Scholar 

  • Felton SM, Brown GC, Felberg NT and Federman JL (1979) Vitreous inhibition of tumor neovascularization. Arch Ophthal 97:1710–1713

    Article  CAS  PubMed  Google Scholar 

  • Fine M and Stein M (1973) The role of corneal vascularization in human corneal graft reactions. Ciba Found Ser 15:193–208. Amsterdam, Elsevier

    Google Scholar 

  • Flower RJ (1978) Prostaglandins and related compounds. In: JR Vane and SH Ferreira: Inflammation. Handbook of experimental pharmacology, Vol. 50/I. Berlin, Springer, p 374–422

    Google Scholar 

  • Folca PJ (1969) Corneal vascularization induced experimentally with corneal extracts. Brit J Ophthal 53:827–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. New Engl J Med 285: 1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Folkman J, Merler E, Abernathy C and Williams G (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133:275–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folkman J (1974) Tumor angiogenesis factor. Cancer Res 34:2109–2113

    CAS  PubMed  Google Scholar 

  • Ford-Hutchinson AW, Bray MA, Doig MV, Shipley ME and Smith MJH (1980) Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature 286:264–265

    Article  CAS  PubMed  Google Scholar 

  • Fromer CH and Klintworth GK (1975a) An evaluation of the role of leukocytes in the pathogenesis of experimentally induced corneal vascularization. I. Comparison of experimental models of corneal vascularization. Amer J Path 79:537–554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fromer CH and Klintworth GK (1975b) An evaluation of the role of leukocytes in the pathogenesis of experimentally induced corneal vascularization. II. Studies on the effect of leukocytic elimination on corneal vascularization. Amer J Path 81:531–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fromer CH and Klintworth GK (1976) An evaluation of the role of leukocytes in the pathogenesis of experimentally induced corneal vascularization. III. Studies related to the vasoproliferative capability of polymorphonuclear leukocytes and lymphocytes. Amer J Path 82:157–170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garden JW (1965) Mast cell disruption and other changes in the pericorneal tissue morphology after intraperitoneal injections of a potent histamine liberator (Compound 48/80). Invest Ophthal 4:835–843

    CAS  PubMed  Google Scholar 

  • Gerke E, Spitznas M and Brodde O-E (1976) The role of lactic acid in retinal neovascularization. Graefe's Arch Ophthal 200:79–84

    Article  CAS  Google Scholar 

  • Gimbrone MA, Leapman SB, Cotran RS and Folkman J (1973) Tumor angiogenesis: iris neovascularization at a distance from experimental intraocular tumors. J Nat Cancer Inst 50:219–228

    PubMed  Google Scholar 

  • Gimbrone MA, Cotran RS, Leapman SB and Folkman J (1974) Tumor growth and neovascularization: an experimental model using the rabbit cornea. J Nat Cancer Inst 52:413–427

    PubMed  Google Scholar 

  • Goetzl EJ (1980) A role for endogenous mono-hydroxy-eicosatetraenoic acids (HETEs) in the regulation of human neutrophil migration. Immunology 40:709–719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goetzl EJ and Pickett WC (1980) The human PMN leukocyte chemotactic activity of complex hydroxy-eicosatetraenoic acids (HETEs). J Immunol 125:1789–1791

    CAS  PubMed  Google Scholar 

  • Goetzl EJ (1981) Oxygenation products of arachidonic acid as mediators of hypersensitivity and inflammation. Med Clin N Amer 65:809–828

    Article  CAS  PubMed  Google Scholar 

  • Goetzl EJ and Pickett WC (1981) Novel structural determinants of the human neutrophil chemotactic activity of Leukotriene B. J Exp Med 153:482–487

    Article  CAS  PubMed  Google Scholar 

  • Goren SB, Eisenstein R and Choromokos E (1977) The inhibition of corneal vascularization in rabbits. Amer J Ophthal 84:305–309

    Article  CAS  PubMed  Google Scholar 

  • Gospodarowicz D, Bialecki H and Thakral TK (1979) The angiogenetic activity of the fibroblast and epidermal growth factor. Exp Eye Res 28:501–514

    Article  CAS  PubMed  Google Scholar 

  • Grützmann R (1982) Persönliche Mitteilung

  • Hagedoorn WG and Maas ER (1956) The effect of histamine on the rabbit cornea. Amer J Ophthal 42:89–93

    Article  CAS  PubMed  Google Scholar 

  • Hall DWR and Bonta IL (1977) Prostaglandins and ocular inflammation. Docum Ophthal 44:421–434

    Article  CAS  PubMed  Google Scholar 

  • Hanna C and Sharp JD (1972) Ocular absorption of indomethacin by the rabbit. Arch Ophthal 88:196–198

    Article  CAS  PubMed  Google Scholar 

  • Heydenreich A (1955) Das Verhalten der Hornhautvaskularisation im Tierversuch. Klin Mbl Augenheilk 127:465–471

    CAS  Google Scholar 

  • Higgs GA, Salmon JA and Spayne JA (1981) The inflammatory effects of hydroperoxy and hydroxy acid products of arachidonate lipoxygenase in rabbit skin. Brit J Pharmacol 74:429–433

    Article  CAS  Google Scholar 

  • Hinzpeter EN and Naumann GOH (1980) Hornhaut und Skiera. In: GOH Naumann: Pathologie des Auges. Berlin, Springer, p 372–380

    Google Scholar 

  • Honegger H (1968) Hornhautvaskularisation. Experimentelle Untersuchung über die Rolle von Hornhautquellung und Entzündung. Graefes Arch klin exp Ophthal 176: 239–244

    Article  CAS  Google Scholar 

  • Hong SL and Levine L (1976) Inhibition of arachidonic acid release from cells as the biochemical action of antiinflammatory corticosteroids. Proc Nat Acad Sci USA 73: 1730–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horrobin DF (1978) Prostaglandins. Physiology, pharmacology and clinical significance. Edinburgh, Churchill Livingstone

    Google Scholar 

  • Imre G (1972) Neovascularization of the eye. In: JG Bellows: Contemporary ophthalmology. Baltimore, Williams & Wilkins, p 88–91

    Google Scholar 

  • Imre G and Bögi J (1980) Kausale Therapie bei Hornhautvaskularisation. Klin Mbl Augenheilk 177:798–801

    Article  CAS  PubMed  Google Scholar 

  • Kass MA and Holmberg NJ (1979) Prostaglandin and thromboxane synthesis by microsomes of rabbit ocular tissues. Invest Ophthal Vis Sci 18:166–171

    CAS  PubMed  Google Scholar 

  • Klintworth GK (1977) The contribution of morphology to our understanding of the pathogenesis of experimentally produced corneal vascularization. Invest Ophthal Vis Sci 16:281–285

    CAS  PubMed  Google Scholar 

  • Kottow MH (1978) Anterior segment fluorescein angiography. Baltimore, Williams & Wilkins

    Google Scholar 

  • Kulkarni PS and Srinivasan BD (1981) Effect of topical and intraperitoneal indomethacin on the generation of PGE2-like activity in rabbit conjunctiva and iris-ciliary body. Exp Eye Res 33:121–129

    Article  CAS  PubMed  Google Scholar 

  • Lagoutte F (1981) Cornée et néovascularisation. Essai physiopathologique. J Fr Ophtal 4:531–539

    CAS  Google Scholar 

  • Langer R and Folkman J (1976) Polymers for the sustained release of proteins and other macromolecules. Nature 263:797–800

    Article  CAS  PubMed  Google Scholar 

  • Langer R, Brem H, Falterman K, Klein M and Folkman J (1976) Isolation of a cartilage factor that inhibits tumor neovascularization. Science 193:70–72

    Article  CAS  PubMed  Google Scholar 

  • Langham M (1953) Observations on the growth of blood vessels into the cornea. Application of a new experimental technique. Brit J Ophthal 37:210–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langham ME (1960) The inhibition of corneal vascularization by triethylene thiophosphoramide. Amer J Ophthal 49:1111–1117

    Article  CAS  PubMed  Google Scholar 

  • Lavergne G (1967) Etude expérimentale et clinique de l'action de la triéthylène-thiophosphoramide sur la vascularisation de la cornée. Bull Soc Franc Ophtal 80:146–155

    CAS  PubMed  Google Scholar 

  • Lazar M, Lieberman TW and Leopold IH (1968) Hyperbaric oxygenation and corneal neovascularization in the rabbit. Amer J Ophthal 66:107–110

    Article  CAS  PubMed  Google Scholar 

  • Levene R, Shapiro A and Baum J (1963) Experimental corneal vascularization. Arch Ophthal 70:154–161

    Google Scholar 

  • Lewis RA and Austen KF (1981) Mediation of local homeostasis and inflammation by leukotrienes and other mast cell-dependent compounds. Nature 293:103–108

    Article  CAS  PubMed  Google Scholar 

  • Lotner GZ, Lynch JM, Betz SJ and Henson PM (1980) Human neutrophil-derived platelet activating factor. J Immunol 124:676–684

    CAS  PubMed  Google Scholar 

  • Mailáth L and Péter M (1972) Die β-Strahlen-Behandlung der Hornhautvaskularisation nach Keratoplastik. Klin Mbl Augenheilk 160:554–559

    PubMed  Google Scholar 

  • Maumenee AE (1973) The immune response to corneal allografts. Jap J Ophthal 17: 255–276

    Google Scholar 

  • Maurice DM, Zauberman H and Michaelson IC (1966) The stimulus to neovascularization in the cornea. Exp Eye Res 5:168–184

    Article  CAS  PubMed  Google Scholar 

  • Michaelson IC (1952) Effect of cortisone upon corneal vascularization produced experimentally. Arch Ophthal 47:459–464

    Article  CAS  Google Scholar 

  • Michaelson IC, Gluecker L and Stieglitz E (1954) Influence of low-voltage x-radiation on inhibition of new vessels in cornea. Arch Ophthal 52:77–84

    Article  CAS  Google Scholar 

  • Michaelson IC, Herz N and Kertesz D (1954) Effect of increased oxygen concentration on new vessel growth in the adult cornea. Brit J Ophthal 38:588–590

    Article  CAS  Google Scholar 

  • Morley J (1978) Lymphokines. In: JR Vane and SH Ferreira: Inflammation. Handbook of experimental pharmacology, Vol 50/I. Berlin, Springer, p 314–342

    Google Scholar 

  • Nagy L, Lee TH, Goetzl EJ, Pickett WC and Kay AB (1982) Complement receptor enhancement and chemotaxis of human neutrophils and eosinophils by leukotrienes and other lipoxygenase products. Clin Exp Immunol 47:541–547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neuhann Th, Kutzner J, Sommer G and Schweden F (1979) Die Beeinflussung der experimentell ausgelösten Hornhautvaskularisation des Kaninchens durch einmalige Applikation von Beta-Strahlen. Ber Dtsch Ophthal Ges 76:209–213

    Article  Google Scholar 

  • Nunziata B, Smith RS and Weimar V (1977) Corneal radiofrequency burns: effects of prostaglandins and 48/80. Invest Ophthal Vis Sci 16:285–291

    CAS  PubMed  Google Scholar 

  • O'Flaherty JT, Showell HJ, Becker EL and Ward PA (1979) Role of arachidonic acid dérivates in neutrophil aggregation: a hypothesis. Prostaglandins 17:915–927

    Article  PubMed  Google Scholar 

  • O'Flaherty JT, DeChatelet LR, McCall CE and Bass DA (1980) Neutrophil aggregation: evidence for a different mechanism of action by phorbol myristate acetate (40962). Proc Soc Exp Biol Med 165:225–232

    Article  PubMed  Google Scholar 

  • Oseas RS, Boxer LA, Butterick C and Baehner RL (1980) Differences in polymorphonuclear leukocyte aggregating among several species in response to chemotactic stimulation. J Lab Clin Med 96:213–221

    CAS  PubMed  Google Scholar 

  • Palmblad J, Malmsten CL, Udén A-M, Radmark O, Engstedt L and Samuelsson B (1981) Leukotriene B4 is a potent and stereospecific stimulator of neutrophil chemotaxis and adherence. Blood 58:658–661

    CAS  PubMed  Google Scholar 

  • Palmblad J, Udén A-M, Lindgren J-A, Radmark O, Hansson G and Malmsten CL (1982) Effects of novel leukotrienes on neutrophil migration. FEBS Letters 144:81–84

    Article  CAS  PubMed  Google Scholar 

  • Parnham MJ and Bonta IL (1980) Prostaglandins and granuloma formation in vivo. Agents and Actions Suppl:53–65

  • Payrau P, Pouliquen A, Faure J-P and Offret R (1967) La transparence de la cornée. Les méchanismes de ses altérations. Paris, Masson, p 330–365

    Google Scholar 

  • Perkins ES (1975) Prostaglandins and the eye. Adv Ophthal 29:2–21

    CAS  Google Scholar 

  • Podos SM and Becker B (1976) Comparison of ocular prostaglandin synthesis inhibitors. Invest Ophthal 15:841–844

    CAS  PubMed  Google Scholar 

  • Prendergast RA (1981) Experimental corneal neovascularization. Proceedings ‘Immunology of the eye; Workshop: III’. London, IRL-Press, p 325–336

    Google Scholar 

  • Prince JH (1964) The rabbit in eye research. Springfield, Thomas

  • Rae SA and Smith MJH (1981) The stimulation of lysosomal enzyme secretion from human polymorphonuclear leukocytes by leukotriene B4. J Pharm Pharmacol 33: 616–617

    Article  CAS  PubMed  Google Scholar 

  • Rahi AHS and Garner A (1976) Immunopathology of the eye. Oxford, Blackwell

    Google Scholar 

  • Reim M (1972) Warum ist die Hornhaut durchsichtig? Ber Dtsch Ophthal Ges 71:58–77

    CAS  Google Scholar 

  • Reim M, Schmidt-Martens FW, Hörster B and Scheidhauer E (1980) Morphologische und biochemische Befunde bei experimentellen Verätzungen mit Alkali. Ber Dtsch Ophthal Ges 77:749–759

    Article  Google Scholar 

  • Reim M (1982) Die Bedeutung des Limbus für die Ernährung der Kornea. In: W Doden: Limbusprobleme. Stuttgart, Enke, p 1–7

    Google Scholar 

  • Rochels R (1982) Experimentelle Untersuchungen zur Tumorangiogenese. Graefe's Arch Clin Exp Ophthal 219:20–23

    Article  CAS  Google Scholar 

  • Rock RL (1963) Inhibition of corneal vascularization by triethylene thiophosphoramide (Thio-Tepa). Arch Ophthal 69:86–90

    Article  Google Scholar 

  • Ruben M (1981) Corneal vascularization. Int Ophthal Clin 21/2:27–38

    Article  Google Scholar 

  • Ryu S and Albert M (1979) Evaluation of tumor angiogenesis factor with the rabbit cornea model. Invest Ophthal Vis Sci 18:831–841

    CAS  PubMed  Google Scholar 

  • Schiffmann E (1981) Molecular events in leukocyte chemotaxis: their possible roles in processing the chemical signal. Bioscience Reports 1:89–99

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Martens FW and Bremer H-J (1980) Alteration nutritiver Metabolite im Hornhautstroma des Kaninchenauges in der frühen Phase nach experimenteller Alkaliverätzung. Graefes Arch klin exp Ophthal 213:207–213

    Article  CAS  Google Scholar 

  • Schmitt E-J, Rochels R and Messing B (1979) Ergebnisse nach Keratoplastik. Vortrag 137. Vers Rhein-Westf Augenärzte, Düsseldorf

    Google Scholar 

  • Sirois P and Borgeat P (1980) From slow reacting substance of anaphylaxis (SRS-A) to leukotriene D4 (LTD4). Int J Immunopharmacol 2:281–293

    Article  CAS  PubMed  Google Scholar 

  • Smith RS (1961) The development of mast cells in the vascularized cornea. Arch Ophthal 66:117–124

    Google Scholar 

  • Smith RJ and Iden SS (1980) Pharmacological modulation of chemotactic factorelicited release of granule-associated enzymes from human neutrophils. Effects of prostaglandins, nonsteroid anti-inflammatory agents and corticosteroids. Biochem Pharmacol 29:2389–2395

    Article  CAS  PubMed  Google Scholar 

  • Smolin G and Keates RH (1966) Retardation of corneal vascularization. Amer J Ophthal 61:321–322

    Article  CAS  PubMed  Google Scholar 

  • Synderman R (1981) Chemotactic factor receptors on leucocytes. Proceedings ‘Immunology of the eye; Workshop: III’. London, IRL-Press, p 309–323

    Google Scholar 

  • Srinivasan BD and Kulkarni PS (1980) The role of arachidonic acid metabolites in mediation of the polymorphonuclear leukocyte response following corneal injury. Invest Ophthal Vis Sci 19:1087–1093

    CAS  PubMed  Google Scholar 

  • Sundmacher R (1977) Immunreaktion nach Keratoplastik. Klin Mbl Augenheilk 171: 705–722

    CAS  PubMed  Google Scholar 

  • Szeghy R (1960) Die Rolle der Schädigung im Mechanismus der experimentellen Hornhaut-Vaskularisation. Graefes Arch Ophthal 162:215–218

    Article  CAS  Google Scholar 

  • Tencé M, Polonsky J, LeCouedic J-P and Benveniste J (1980) Release, purification, and characterization of platelet-activating factor (PAF). Biochimie 62:251–259

    Article  PubMed  Google Scholar 

  • Tenner A (1971) Fluoreszenzangiographie bei experimentell ausgelöster Hornhaut-vaskularisation des Kaninchens. Med Habil Schrift Heidelberg

    Google Scholar 

  • Tenner A and Honegger H (1972) Fluorescenzangiographie bei experimenteller Hornhautvascularisation des Kaninchens. Ber Dtsch Ophthal Ges 71:42–46

    CAS  Google Scholar 

  • Tesch H and König W (1979) Entstehung und Bedeutung der Lipidmediatoren für den Entzündungsablauf. Immun Infekt 7:157–164

    CAS  PubMed  Google Scholar 

  • Thoft RA, Friend J and Murphy HS (1979) Ocular surface epithelium and corneal vascularization in rabbits. I. The role of wounding. Invest Ophthal Vis Sci 18:85–92

    CAS  PubMed  Google Scholar 

  • Turss R and Schebitz H (1972) Die Bedeutung des Kammerwassers und der Randschlingengefäße für die Ernährung der Hornhaut. Ber Dtsch Ophthal Ges 71:87–91

    CAS  Google Scholar 

  • Vail D and Ascher KW (1943) Corneal-vascularization problems. Amer J Ophthal 26: 1025–1044

    Article  Google Scholar 

  • Waitzman MB (1970) Possible new concepts relating prostaglandins to various ocular functions. Surv Ophthal 14:301–326

    CAS  Google Scholar 

  • Walenga RW, Showell HJ, Feinstein MB and Becker EL (1980) Parallel inhibition of neutrophil arachidonic acid metabolism and lysosomal enzyme secretion by nordihydroguaiaretic acid. Life Sciences 27:1047–1053

    Article  CAS  PubMed  Google Scholar 

  • Walsh CE, Waite BM, Thomas MJ and DeChatelet LR (1981) Release and metabolism of arachidonic acid in human neutrophils. J Biol Chem 256:7228–7234

    CAS  PubMed  Google Scholar 

  • Wedmore CV and Williams TJ (1981) Control of vascular permeability by polymorphonuclear leukocytes in inflammation. Nature 289:646–650

    Article  CAS  PubMed  Google Scholar 

  • White JG and Estensen RD (1974) Selective labilization of specific granules in polymorphonuclear leukocytes by phorbol myristate acetate. Amer J Path 75:45–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wissler JH (1980) Entzündungsmediatoren: chemische Anlockung, Motilitätsbeeinflussung und molekulare Mechanismen biologischer Nachrichtenübertragung bei der Ansammlung von Leukozyten. Habilitationsschrift, Ruhr-Universität Bochum

    Google Scholar 

  • Wissler JH, Gottwick M, Renner H, Klein HH, Gerlach U, Wissler AM, Schuurmans R and Schaper W (1981) Inflammation, chemotropisms and morphogenesis: isolation of novel monokine and leucocytederived protein mediators (‘angiotropins’) for a directional angiogenesis reaction from cell cultures and infarcted heart muscle. Fed Proc 40:1638

    Google Scholar 

  • Wolter JR (1958) Reactions of the cellular elements of the corneal stroma. A report of experimental studies in the rabbit eye. Arch Ophthal 59:873–881

    Article  CAS  Google Scholar 

  • Zauberman H, Michaelson IC, Bergmann F and Maurice DM (1969) Stimulation of neovascularization of the cornea by biogenic amines. Exp Eye Res 8:77–83

    Article  CAS  PubMed  Google Scholar 

  • Zurier RB (1981) Prostaglandins, immune response and inflammation. Proceedings ‘Immunology of the eye; Workshop: II’. London, IRL-Press, p 273–286

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rochels, R. Tierexperimentelle untersuchungen zur rolle von entzündungsmediatoren bei der hornhautneovaskularisation. Doc Ophthalmol 57, 215–262 (1984). https://doi.org/10.1007/BF00143085

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00143085

Key words

Navigation