Skip to main content
Log in

Mixed-ligand copper(II) complexes with positive redox potentials

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

Mixed-ligand complexes formed by reaction of Cu(ClO4)2 with 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine (dppt) as primary ligand and 2,2′-bipyridine (bipy), 1,10-phenanthroline (phen), 2,9-dimethyl-1,10-phenanthroline (dmp), N,N-bis(pyrid-2-ylmethyl)amine (dipica), N,N-bis(benzimidazol-2-ylmethyl)amine (bba), 1,3-bis(2-benzimidazolyl)-2-thiapropane (bbms) and 1,5-bis(benzimidazolyl)-3-thiapentane (bbes) as the secondary ligands have been isolated. They are of the type [Cu(dppt)L](ClO4)2·nH2O, where n = 0 or 2. All complexes exhibit only one ligand field band and their cryogenic solution e.p.r. spectra are axial, with vmax and g values diagnostic of a square-based geometry. The spectral and redox data are consistent with facial coordination of the tridentate ligands. All the complexes exhibit a positive redox potential (versus n.h.e.). The weak σ-bonding of dppt, caused by the highly electron-withdrawing phenyl rings, the strong π-back bonding involving phen and dmp, and interligand repulsions appear to be responsible for the relatively positive CuII/CuI redox potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Groeneveld, J. van Rijn, J. Reedijk and G. W. Canters, J. Am. Chem. Soc., 110, 4893 (1988); T. Pandiyan, M. Murali and M. Palaniandavar, Transition Met. Chem., 20, 440 (1995).

    Google Scholar 

  2. L. Casella, M. Gullotti, A. Pintar, F. Pinciroli, R. Vigano and P. Zanello, J. Chem. Soc., Dalton Trans., 1161 (1989).

  3. A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn and G. C. Verschoor, J. Chem. Soc., Dalton Trans., 1349 (1984).

  4. R. P. F. Kanters, R. Yu and A. W. Addision, Inorg. Chim. Acta, 196, 97 (1992).

    Google Scholar 

  5. J. M. Guss and H. C. Freeman, J. Molec. Biol., 169, 521 (1983).

    Google Scholar 

  6. E. N. Baker, J. Molec. Biol., 203, 1071 (1988).

    Google Scholar 

  7. J. M. Downes, J. Whelan and B. Bosnich, Inorg. Chem., 20, 1081 (1981).

    Google Scholar 

  8. N. Kitajima, K. Fujisawa, M. Tanaka and Y. Moro-oka, J. Am. Chem. Soc., 114, 9232 (1992) and refs cited therein.

    Google Scholar 

  9. U. Sivagnanam and M. Palaniandavar, J. Chem. Soc., Dalton Trans., 2277 (1994).

  10. J. van Rijn, W. L. Driessen, J. Reedijk and J. M. Lehn, Inorg. Chem., 23, 3584 (1984).

    Google Scholar 

  11. P. J. M. W. L. Birker, J. Helder, G. Henkel, B. Krebs and J. Reedijk, Inorg. Chem., 21, 357 (1982).

    Google Scholar 

  12. M. Palaniandava and A. W. Addison, Unpublished work.

  13. J. Whelan and B. Bosnich, Inorg. Chem., 25, 3671 (1986).

    Google Scholar 

  14. A. W. Addison, T. N. Rao and E. Sinn, Inorg. Chem., 23, 1957 (1984).

    Google Scholar 

  15. P. J. Burke, K. Henrick and D. R. McMillin, Inorg. Chem., 21, 1881 (1982).

    Google Scholar 

  16. R. Uma, M. Palaniandavar and R. J. Butcher, Unpublished work.

  17. J. K. Romary, R. D. Zachariasen, J. D. Barger and H. Schiesser, J. Chem. Soc., 2884 (1968).

  18. U. Sivagnanam, T. Pandiyan and M. Palaniandavar, Indian J. Chem., 32B, 572 (1993).

    Google Scholar 

  19. A. W. Addison and P. J. Burke, J. Heterocycl. Chem., 18, 803 (1981).

    Google Scholar 

  20. J. V. Dagdigian and C. A. Reed, Inorg. Chem., 18, 2623 (1979).

    Google Scholar 

  21. M. Palaniandavar, R. J. Butcher and A. W. Addison, Unpublished work.

  22. M. Palaniandavar, T. Pandiyan, M. Lakshminarayanan and H. Manohar, J. Chem. Soc., Dalton Trans., 455 (1995) and refs cited therein.

  23. T. Pandiyan, M. Palaniandavar, M. Lakshminarayanan and H. Manohar, J. Chem. Soc., Dalton Trans., 3377 (1992) and refs cited therein.

  24. D. X. West and M. Palaniandavar, Inorg. Chim. Acta, 76, L149 (1983).

    Google Scholar 

  25. Y. Nonaka, T. Toku and S. Kida, Bull. Chem. Soc. Japan, 47, 312 (1974).

    Google Scholar 

  26. H. Nakai and Y. Noda, Bull. Chem. Soc. Japan, 51, 1386 (1978) and refs cited therein.

    Google Scholar 

  27. A. W. Addison, P. J. Burke, K. Henrick, T. N. Rao and E. Sinn, Inorg. Chem., 22, 3645 (1983).

    Google Scholar 

  28. H. J. Schugar in K. D. Karlin and J. A. Zubieta (Eds), Copper Coordination Chemistry: Biochemical and Inorganic Perspectives, Academic Press, Guilderland, New York 1983, p. 49.

    Google Scholar 

  29. B. J. Hathaway and D. E. Billing, Coord. Chem. Rev., 5, 143 (1970).

    Google Scholar 

  30. A. W. Addison, M. Carpenter, L. K. M. Lau and M. Wicholas, Inorg. Chem., 17, 1545 (1978).

    Google Scholar 

  31. U. Sakaguchi and A. W. Addison, J. Chem. Soc., Dalton Trans., 600 (1979).

  32. M. Murali, M. Palaniandavar and T. Pandiyan, Inorg. Chim. Acta, 224, 19 (1994).

    Google Scholar 

  33. A. J. Bard and L. R. Faulkner, in Electrochemical Methods: Fundamental Applications, Wiley, New York, 1980, p. 218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murali, M., Palaniandavar, M. Mixed-ligand copper(II) complexes with positive redox potentials. Transition Met Chem 21, 142–148 (1996). https://doi.org/10.1007/BF00136544

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00136544

Keywords

Navigation