Skip to main content
Log in

Karyotype displacement in a laboratory population of the two spotted spider mite Tetranychus urticae (Koch): Experiments and computer simulations

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Three different strains, homozygous for a radiation induced structural chromosome mutation (T), exhibiting negative hererosis, were tested for their ability to displace the standard (wild-type) karyotype from experimental populations. The experimental populations were initiated by mixing fertilized females of both a T strain and the standard strain at different ratios. Two of the T strains showed the ability to displace the standard karyotype if the initial frequency of the T karyotype was at least 0.65. The additional release of T males into the experimental population accelerated considerably the process of displacement of the standard karyotype, especially if the initial T karyotype frequency was 0.65.

A computer model for simulating the process of population displacement in Tetranychus urticae was developed. The model accounts for variation in developmental time and for the age dependency of variables related to fitness. The simulations showed a good correlation with the experimental results. A system analysis on the sensitivity of the model output to varying different population parameters demonstrated that especially the relative number of males produced by a T strain and the female developmental rate were of significant importance to the population displacement ability of a T strain. The negative influence of genetic markers on general fitness and various aspects of practical application of the method are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birch, L. C., 1948. The intrinsic rate of natural increase on an insect population. J. Anim. Ecol. 17: 15–26.

    Google Scholar 

  • Bravenboer, L., 1975. Entwicklungen bei der biologischen Bekämpfung in Gewächshäusern. Z. angew. Ent. 77: 390–391.

    Google Scholar 

  • Chambers, D. L., 1977. Quality control in mass rearing. A. Rev. Ent. 22: 289–308.

    Google Scholar 

  • Chant, D. A., 1961. An experiment in biological control of Tetranychus telarius (Acarina: Tetranychidae) in a green-house using the predacious mite Phytoseiulus persimilis Athias-Henriot (Phytoseiidae). Can. Ent. 93: 437–443.

    Google Scholar 

  • Childress, D., 1972. Changing population structure through the use of compound chromosomes. Genetics 72: 183–186.

    Google Scholar 

  • Comins, H. N., 1977. The development of insecticide resistance in the presence of migration. J. theor. Biol. 64: 177–197.

    Google Scholar 

  • Craig, G. B., 1961. Prospects for vector control through genetic manipulation of populations. Bull. Wld Hlth Org. 29: (suppl.) 89–97.

    Google Scholar 

  • Curtis, C. F., 1968a. A possible genetic method for the control of insect pests, with special reference to tsetse flies (Glossina spp.). Bull. Ent. Res. 57: 509–523.

    Google Scholar 

  • Curtis, C. F., 1968b. Possible use of translocations to fix desirable genes in insect pest populations. Nature 218: 368–369.

    Google Scholar 

  • Curtis, C. F., 1976. Population replacement in Culex fatigans by means of cytoplasmic incompatibility. 2. Field cage experiments with overlapping generations. Bull. Wld Hlth Org. 53: 107–119.

    Google Scholar 

  • Curtis, C. F., 1979. Translocations, hybrid sterility and the introduction into pest populations of genes favourable to man. In: Genetics in relation to insect management. Eds M. A., Hoy and J. J., McKelvyJr. Rockefeller Foundation New York, pp. 19–30.

    Google Scholar 

  • Curtis, C. F. & Adak, T., 1974. Population replacement in Culex fatigans by means of cytoplasmic incompatibility. 1. Laboratory experiments with non-overlapping generations. Bull. Wld Hlth Org. 51: 249–255.

    Google Scholar 

  • Curtis, C. F. & Hill, W. G., 1971. Theoretical studies on the use of translocations for the control of tsetse flies and other disease vectors. Theor. Pop. Biol. 2: 71–90.

    Google Scholar 

  • De Bach, P., 1975. Biological control by natural enemies. Cambridge University Press.

  • Dietz, K., 1976. The effect of immigration on genetic control. Theor. Pop. Biol. 9: 58–67.

    Google Scholar 

  • Feldmann, A. M., 1977. Mating competitiveness and the effect of X-rays and ageing on males of Tetranychus urticae (Acarina, Tetranychidae) in relation to genetic control. Entomologia exp. appl. 21: 182–191.

    Google Scholar 

  • Feldmann, A. M., 1979. The different genetic effects induced in mature sperm and prophase I oocytes of Tetranychus urticae Koch (Acari: Tetranychidae) as expressed in F1-females. In: Fundamental aspects of genetic control of the two-spotted spider mite. Thesis, University of Amsterdam, pp. 1–150.

  • Feldmann, A. M., 1980. Life table and male mating competitiveness of wild-type and of a chromosome mutation strain of Tetranychus urticae Koch (Acari: Tetranychidae) in relation to genetic pest control. Entomologia exp. appl. 29: 134–146.

    Google Scholar 

  • Fitz-Earle, M., 1975a. Minimum frequency of compound autosomes in Drosophila melanogaster to achieve chromosomal replacement in cages. Genetica 45: 191–201.

    Google Scholar 

  • Fitz-Earle, M., Holm, D. G. & Suzuki, D. T., 1973. Genetic control of insect populations: 1. Cage studies of chromosome replacement by compound autosomes in Drosophila melanogaster. Genetics 74: 461–475.

    Google Scholar 

  • Fitz-Earle, M., Holm, D. G. & Suzuki, D. T., 1975. Population control of caged native fruitflies in the field by compound autosomes and temperature-sensitive mutants. Theor. appl. Genet. 46: 25–32.

    Google Scholar 

  • Goudriaan, J., 1973. Dispersion in simulation models of population growth and salt movement in the soil. Neth. J. agric. Sci. 21: 269–281.

    Google Scholar 

  • Helle, W., 1969. Fertilization in the two spotted spider mite. Entomologia exp. appl. 10: 103–110.

    Google Scholar 

  • Helle, W., 1969. New developments towards biological control of the two spotted spider mite by incompatible genes. Publs. Orgn. Eur. Pl. Prot. Paris, Ser. A 52: 7–15.

    Google Scholar 

  • Hickey, W. A. & Craig, G. B., 1966. Distortion of sex ratio in populations of Aedes aegypti. Can. J. Genet. Cytol. 8: 260–278.

    Google Scholar 

  • Holm, D. G., 1974. Compound autosomes. In: Ashburner, M. & Novitski, E. (Eds.), Biology of Drosophila, Vol. 1, New York: Acad. Press.

    Google Scholar 

  • Huffaker, C. B., Van de, Vrie, M. & McMurtry, J. A., 1969. The ecology of tetranychid mites and their natural control. A. Rev. Ent. 14: 125–174.

    Google Scholar 

  • Huffaker, C. B., Van de, Vrie, M., McMurtry, J. A., 1970. Ecology of tetranychid mites and their natural enemies: A review. II Tetranychid populations and their possible control by predation. Hilgardia 40: 391–458.

    Google Scholar 

  • Kaufman, T. C. & Suzuki, D. T., 1974. Temperature-sensitive mutations in Drosophila melanogaster. XX. Lethality due to translocations. Can. J. Genet. Cytol. 16: 579–592.

    Google Scholar 

  • Laven, H., 1967. Speciation and evolution in Culex pipiens. In: Wright, J. W. & Pal, R. Genetics of insect vectors of disease. Amsterdam, Elsevier, 1967.

    Google Scholar 

  • Li, C. C., 1978. First course in population genetics. Boxwood Press, C. A., U.S.A.

    Google Scholar 

  • Lea, D. E. & Catcheside, D. G., 1945. The relation between recessive lethals, dominant lethals and chromosome aberration in Drosophila. J. Genet. 47: 10–24.

    Google Scholar 

  • Lorimer, N., Lounibos, L. P. & Pietersen, J. L., 1976. Field trials with a translocation homozygote in Aedes aegypti for population replacement. J. econ. Ent. 69: 405–409.

    Google Scholar 

  • McDonald, J. C. & Overhand, D. E., 1973. House fly genetics II Isolation of a heat sensitive translocation homozygote. J. Hered. 64: 253–256.

    Google Scholar 

  • McKenzie, J. A., 1976. The release of a compound-chromosome stock in a vineyard cellar population of Drosophila melanogaster. Genetics 82: 685–695.

    Google Scholar 

  • McKenzie, J. A., 1977. The effect of immigration on genetic control. Theor. appl. Genet. 49: 79–83.

    Google Scholar 

  • McMurtry, J. A., Huffaker, C. B. & Van de, Vries, M., 1970. Ecology of tetranychid mites and their natural enemies. A review, I Tetranychid enemies: Their biological characters and the impact of spray practices. Hilgardia 40: 331–458.

    Google Scholar 

  • Mitchell, R., 1972. The sex ratio of the spider mite, Tetranychus urticae (Koch). Entomologia exp. appl. 15: 299–305.

    Google Scholar 

  • Nelson, R. D., 1968. Effects of gamma radiation on the biology and population suppression of the two-spotted spider mite, Tetranychus urticae Koch. Ph. D. Thesis, University of California, Davis.

  • Nelson, R. D. & Stafford, E. M., 1972. Effects of gamma radiation on the two-spotted spider mite, Tetranychus urticae Koch. Hilgardia, 41: 299–341.

    Google Scholar 

  • Overmeer, W. P. & Harrison, R. A., 1969. Notes on the control of the sex ratio in populations of the two spotted spider mite, Tetranychus urticae (Koch) (Acarina: Tetranychidae). N.Z. Jl Sci. 12: 920–928.

    Google Scholar 

  • Overmeer, W. P. J. & Van, Zon, A. Q., 1973. Studies on hybrid sterility of single, double and triple chromosome mutation heterozygotes of Tetranychus urticae with respect to genetic control of spider mites. Entomologia exp. appl. 16: 389–394.

    Google Scholar 

  • Pal, R. & LaChance, L. E., 1974. The operational feasibility of genetic methods for control on insects of medical and veterinary importance A. Rev. Ent. 19: 269–291.

    Google Scholar 

  • Robinson, A. S. 1976. Progress in the use of chromosomal translocations for the control of insect pests. Biol. Rev. 51: 1–24.

    Google Scholar 

  • Serebrovski, A. S., 1940. On the possibility of a new method for the control of insect pests. Zool. Zh. 19: 618–630 (in Russian). Engl. transl. in: IAEA publication STI/PUB/224, Vienna (1969): 123–137.

    Google Scholar 

  • Sobels, F. H., 1972. The viability of II–III translocations in homozygous condition. Dros. Inf. Serv. 48: 117.

    Google Scholar 

  • Von, Ende, C. N., 1978. Simulation of the release of sex-linked translocation homozygotes for population replacement. J. econ. Ent. 71: 532–543.

    Google Scholar 

  • Watson, T. F., 1964. Influence of host plant condition on population increase of Tetranychus telarius (L.) (Acarina: Tetranychidae). Hilgardia 35, 273–322.

    Google Scholar 

  • Whitten, M. J., 1970. Genetics of pests in their management. In: Concepts of pest management (eds R. L., Rabb & F. E., Guthrie), 119–135. N. C. State University, Raleigh.

    Google Scholar 

  • Whitten, M. J., 1971. Insect control by genetic manipulation of natural populations. Science 171: 612–618.

    Google Scholar 

  • Whitten, M. J. & Foster, G. G., 1975. Genetical methods of pest control. A. Rev. Ent. 20: 461–476.

    Google Scholar 

  • Van, Zon, A. Q. & Overmeer, W. P. J., 1972. Induction of chromosome mutations by X-irradiation in Tetranychus urticae (Tetranychidae) with respect to a possible method of genetic control. Entomologia exp. appl. 15: 195–202.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldmann, A.M., Sabelis, M.W. Karyotype displacement in a laboratory population of the two spotted spider mite Tetranychus urticae (Koch): Experiments and computer simulations. Genetica 55, 93–110 (1981). https://doi.org/10.1007/BF00135103

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00135103

Keywords

Navigation