Skip to main content
Log in

Transposable DNA elements and life history traits

I. Transposition of P DNA elements in somatic cells reduces the lifespan of Drosophila melanogaster

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

As an initial study of the influence of transposable DNA elements on life history traits, and as a model system for estimating the impact of somatic genetic damage on longevity, the effect of P DNA element movement in somatic cells on adult lifespan was measured in Drosophila melanogaster males. Lifespan was significantly reduced in males that contained the somatically active P[ry+ Δ2–3](99B) element and 17, 4, 3, but not just a single P element. Furthermore, there appears to be a direct correlation between the number of transposing P elements and the amount of lifespan reduction. This reduction in lifespan observed in males with somatically active P elements is probably due to genetic damage in embryos, larvae and pupae from P-element excisions and insertions, leading to changes in gene structure and regulation, chromosome breakage, and subsequent cell death in adults. This hypothesis is supported in this study by a significant increase in recessive sex-linked lethal mutations in the same males that had reduced lifespans and by the previous observation of chromosome breakage in somatic cells of similar males. The evolutionary implications of these results are discussed, including the possible influence of somatic DNA transpositions on fitness and other life history traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahamson, S., H. U. Meyer, E. Himoc & G. Daniel, 1966. Further evidence demonstrating germinal selection in early permeiotic germ cells of Drosophila males. Genetics 54: 687–697.

    Google Scholar 

  • Ajioka, J. W. & D. L. Hartl, 1989. Population dynamics of transposable elements. pp. 939–958 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Arking, R. & S. P. Dudas, 1989. Review of genetic investigations into the aging processes of Drosophila. J. Amer. Geriatrics Soc. 37: 757–773.

    Google Scholar 

  • Ashburner, M., 1989. Drosophila: A Laboratory Handbook, Cold Spring Harbor Laboratory, Cold Spring Harbor.

    Google Scholar 

  • Auerbach, C., 1966. Mutation Research. Chapman and Hall, London.

    Google Scholar 

  • Berg, D. E. & M. M. Howe, 1989. Mobile DNA. American Society of Microbiology Publication, Washington, D.C.

    Google Scholar 

  • Blackman, R. K. & W. M. Gelbart, 1989. The transposable element hobo of Drosophila melanogaster, pp. 523–529 in Mobile DNA, edited by D. E. Berg and M. M. Howe, American Society of Microbiology Publication, Washington, D.C.

    Google Scholar 

  • Brosius, J., 1991. Retroposons-seeds of evolution. Science 753.

  • Carson, H. L., 1990. Increased genetic variance after a population bottleneck. TREE 5: 228–230.

    Google Scholar 

  • Charlesworth, B. & C. H. Langley, 1991. Population genetics of transposable elements in Drosophila, pp. 150–176 in Evolution at the Molecular Level edited by R. K. Selander, A. G. Clark and T. S. Whittam, Sinauer Associates Inc., Sunderland, Massachusetts.

    Google Scholar 

  • Corces, V. G. & P. K. Geyer, 1991. Interactions of retrotransposons with the host genome-The case of the gypsy element of Drosophila. Trends Genet. 7: 86–90.

    Google Scholar 

  • Crow, J. F., 1984. The P factor: A transposable element in Drosophila, pp.257–273 in Mutation, Cancer and Malformation, edited by E. H. Y. Chu and W. M. Generoso. Plenum, New York.

    Google Scholar 

  • Davis, P. S., M. W. Shen & B. H. Judd. 1987. Asymmetrical pairings of transposons in and proximal to the white locus of Drosophila account for four classes of regularly occurring exchange products. Proc. Natl. Acad. Sci. USA 84: 174–178.

    Google Scholar 

  • Engels, W. R., 1989. P elements in Drosophila melanogaster, pp. 437–484 in Mobile DNA, edited by E. E. Berg and M. M. Howe. American Society of Microbiology Publication, Washington, D.C.

    Google Scholar 

  • Engels, W. R., W. K. Benz, C. R. Preston, P. L. Graham, R. W. Phillis & H. M. Robertson, 1987. Somatic effects of P element activity in Drosophila melanogaster: pupal lethality. Genetics 117: 745–757.

    Google Scholar 

  • Finch, C. E. 1990. Longevity, Senescence, and the Genome. The University of Chicago Press, Chicago.

    Google Scholar 

  • Finnegan, D. J. & D. H. Fawcett, 1986. Transposable elements in Drosophila melanogaster in Oxford Survey Eukaryotic Genes 3: 1–62.

    Google Scholar 

  • Frankham, R., A. Torkamanzehi & C. Moran, 1991. P-element transposon-induced quantitative genetic variation for inebriation time in Drosophila melanogaster. Theor. Appl. Genet. 81: 317–320.

    Google Scholar 

  • Ganetzky, B. & J. R. Flanagan. 1978. On the relationship between senescence and age-related changes in two wild-type strains of Drosophila melanogaster. Exp. Geront. 13: 189–196.

    Google Scholar 

  • Georgiev, P. G., S. L. Kiselev, O. B. Simonova & T. I. Gerasimova, 1990. A novel transposition system in Drosophila melanogaster depending on the Stalker mobile genetic element. EMBO J. 9: 2037–2044.

    Google Scholar 

  • Green, M. M., 1988. Mobile DNA elements and spontaneous gene mutation, pp. 41–50 in Eukaryotic Transposable Elements as Mutagenic Agents, edited by M. E. Lambert, J. F. McDonald and I. B. Weinstein. Cold Spring harbor Laboratory, Cold Spring Harbor.

    Google Scholar 

  • Grigliatti, T., M. Richter & I. Whitebread, 1990. Mutations in Drosophila that act in the larval stage and influence larval or adult longevity, pp. 153–176 in Genetic Effects on Aging II, edited by D. E. Harrison. The Telford Press, Inc., Caldwell, New Jersey.

    Google Scholar 

  • Gunn, J. S., R. C. Woodruff & R. L. Ludwiczak, 1989. The effect of temperature on the movement of P DNA elements in somatic tissues of Drosophila melanogaster. Mutation Res. 226: 267–272.

    Google Scholar 

  • Hartl, D. L., 1989. Transposable Element mariner in Drosophila Species, pp. 531–536 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Henderson, S. A., R. C. Woodruff & J. N. Thompson Jr., 1978. Spontaneous chromosome breakage at male meiosis associated with male recombination in Drosophila melanogaster. Genetics 88: 93–107.

    Google Scholar 

  • Itoh, M., M. Iwabuchi, K. Yoshida & S. H. Hori, 1989. Four tandem defective P-elements associated with positive regulation of the Drosophila melanogaster glucose-6-phosphate dehydrogenase gene. Biochemical Genetics 27: 699–718.

    Google Scholar 

  • Johnson, T. E., 1990. Caenorhabditis elegans offers the potential for molecular dissection of the aging process, pp. 45–59 in Handbook of The Biology of Aging, edited by E. L. Schneider and J. W. Rowe. Academic Press, Inc., New York.

    Google Scholar 

  • Jungen, H. & D. L. Hartl, 1979. Average fitness and populations of Drosophila melanogaster as estimated using compound-autosome strains. Evolution 33: 359–370.

    Google Scholar 

  • Kidwell, M. G., 1984. Hybrid dysgenesis in Drosophila melanogaster: partial sterility associated with embryo lethality in the P-M system. Genetical Research, Cambridge 44: 11–28.

    Google Scholar 

  • Kidwell, M. G., J. Kidwell & J. Sved, 1977. Hybrid dysgenesis in Drosophila melanogaster: A syndrome of aberrant traits Including mutation, sterility and male recombination. Genetics 86: 813–833.

    Google Scholar 

  • Kim, A. I. & E. S. Belyaeva, 1991a. Direct demonstration of the transposition of mobile element MDG4 in the sex and somatic cells of the unstable mutator line of Drosophila melanogaster. Doklady Biological Sciences 314: 595–598.

    Google Scholar 

  • Kim, A. I. & E. S. Belyaeva, 1991b. Transpositions of mobile elements gypsy (mdg 4) and hobo in germ-line and somatic cells of a genetically unstable mutator strain of Drosophila melanogaster. Mol. Gen. Genet. 229: 437–444.

    Google Scholar 

  • Kirkwood, T. B. L., 1988. DNA mutations and aging. Mutations Res. 7–13.

  • Lamb, M. J., 1988. Radiation, pp. 71–84 in Drosophila as a Model Organism for Aging Studies, edited by F. A. Lints and M. H. Soliman. Blackie and Son, Glasgow.

    Google Scholar 

  • Lambert, M. E., J. F. McDonald & I. B. Weinstein, 1988. Eukaryotic Transposable Elements as Mutagenic Agents. Cold Spring Harbor Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Laski, F. A., D. C. Rio & G. M. Rubin, 1986. Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 44: 7–19.

    Google Scholar 

  • Levis, R., T. Hazelrig & G. M. Rubin, 1985. Effects of genomic position on the expression of transduced copies of the white gene of Drosophila. Science 229: 558–561.

    Google Scholar 

  • Lindsley, D. L. & E. H. Grell, 1968. Genetic Variations of Drosophila melanogaster. Carnegie Institution of Washington, Washington, D.C.

    Google Scholar 

  • Lints, F. A. & M. H. Soliman, 1988. Drosophila as a Model Organism for Aging Studies. Blackie and Sons, Ltd., Glasgow.

    Google Scholar 

  • Louis, C. & G. Yannopoulos, 1989. The transposable elements involved in hybrid dysgenesis in Drosophila melanogaster, pp. 205–250 in Oxford Surveys of Eukaryotic Genes, edited by N. MacLean. Oxford University Press, Oxford.

    Google Scholar 

  • Mackay, T. F. C., 1989. Mutation and origin of quantitative variation, pp. 113–119 in Evolution and Animal Breeding, edited by W. G. Hill and T. F. C. Mackay. CAB International, Wallingford, UK.

    Google Scholar 

  • Mackay, T. F. C. & C. H. Langley, 1990. Molecular and phenotypic variation in the achaete-scute region of Drosophila melanogaster. Nature 348: 64–66.

    Google Scholar 

  • Mackay, W. J., W. C. Orr & G. C. Bewley, 1989. Genetic and molecular analysis of antioxidant enzymes in Drosophila melanogaster — A correlation between catalase activity levels, life span, and spontaneous mutation rate. in Molecular Biology of Aging, UCLA Symposia on Molecular and Cellular Biology, New Series, edited by M. Clegg and S. O'Brien. 123: 157–170.

  • Margolin, B. H., B. J. Collings & J. M. Mason, 1983. Statistical analysis and sample-size determination for mutagenicity experiments with binomial responses. Environ. Mutagen. 5: 705–716.

    Google Scholar 

  • Mayer, P. J. & G. T. Baker, 1985. Genetic aspects of Drosophila as a model system of eukaryotic aging, pp. 61–102 in International Review of Cytology, edited by G. H. Bourne and J. F. Danielli. Academic Press, Inc., New York.

    Google Scholar 

  • McClintock, B., 1984. The significance of responses of the genome to challenge. Science 226: 792–801.

    Google Scholar 

  • McDonald, J., 1990. Macroevolution and retroviral elements. BioScience 40: 183–191.

    Google Scholar 

  • Mode, C. J., R. D. Ashleigh, A. Zawodniak & G. T. Baker, 1984. On statistical tests of significance in studies of survivorship in laboratory animals. J. Gerontol. 39: 36–42.

    Google Scholar 

  • Moerman, D. G. & R. H. Waterston, 1989. Mobile Elements in Caenorhabditis elegans and Other Nematodes, pp. 537–556 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society for Microbiology, Washington, D. C.

    Google Scholar 

  • Montgomery, E. A., S.-M. Huang, C. H. Langley & B. H. Judd, 1991. Chromosome rearrangements by ectopic recombination in Drosophila melanogaster: Genome structure and evolution. Genetics 129: 1085–1098.

    Google Scholar 

  • Murray, V., 1990. Hypotesis: Are transposons a cause of aging? Mutation Res. 237: 59–63.

    Google Scholar 

  • Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Osiewacz, H. D., 1990. Molecular analysis of aging processes in fungi. Mutation Res. 237: 1–8.

    Google Scholar 

  • Pasyukova, E. G., E. Sp. Belyaeva, G. L. Kogan, L. Z. Kaidanov & V. A. Gvozdev, 1986. Concerted transpositions of mobile genetic elements coupled with fitness changes in Drosophila melanogaster. Mol. Biol. Evol. 3: 299–312.

    Google Scholar 

  • Phillips, J. P., S. D. Campbell, D. Michaud, M. Charbonneau & A. J. Hilliker, 1989. Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc. Natl. Acad. Sci. USA 86: 2761–2765.

    Google Scholar 

  • Polivanov, S., 1969. Genetic loads and fitness of populations: I. The effects of the gene Stubble on fitness of experimental populations of Drosophila melanogaster. Genetics 63: 933–948.

    Google Scholar 

  • Rio, D. C., 1990. Molecular mechanisms regulating Drosophila P element transposition, in Annual Review of Genetics 24: 543–578 edited by J. G. Sandalios. Annual Review Inc., New York.

    Google Scholar 

  • Robertson, H. M., C. R. Preston, R. W. Phillips, D. M. Johnson-Schlitz, W. K. Benz & W. R. Engels, 1988. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118: 461–470.

    Google Scholar 

  • Roiha, H., G. M. Rubin & K. O'Hare, 1988. P element insertions and rearrangements at the singed locus of Drosophila melanogaster. Genetics 119: 75–83.

    Google Scholar 

  • Rose, M. R., 1990. Evolutionary genetics of aging in Drosophila, pp. 41–54 in Genetic Effects on Ageing II, edited by D. E. Harrison. The Telford Press, Inc. Caldwell, New Jersey.

    Google Scholar 

  • Rubin, G. M., 1983. Dispersed repetitive DNA's in Drosophila, pp. 329–361 in Mobile Genetic Elements, edited by J. A. Shapiro. Academic Press, New York.

    Google Scholar 

  • Sankaranarayanan, K., 1988. Mobile genetic elements, spontaneous mutations, and the assessment of genetic radiation hazards in man, pp. 319–336 in Eukaryotic Transposable Elements as Mutagenic Agents, edited by M. E. Lambert, J. F. McDonald and I. B. Weinstein. Cold Spring Harbor Laboratory, Cold Spring Harbor.

    Google Scholar 

  • Seperack, P. K., M. C. Strobel, D. J. Corrow, N. A. Jenkins & N. G. Copeland, 1988. Somatic and germ-line reverse mutation rates of the retrovirus-induced dilute coat-color mutation of DBA mice. Proc. Natl. Acad. Sci. USA 85: 189–192.

    Google Scholar 

  • Servomaa, K. & T. Rytomma. 1988. Suicidal death of rat chloroleukeamia cells by activation of the long interspersed repetitive DNA element (LIRn). Cell Tissue Kinet. 21: 33–43.

    Google Scholar 

  • Shaw, D. D., P. Wilkinson & D. J. Coates, 1983. Increased chromosomal mutation rate after hybridization between two subspecies of grasshoppers. Science 220: 1165–1167.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1981. Biometry. W. H. Freeman and Company, San Francisco.

    Google Scholar 

  • Sved, J. A., L. M. Blackman, A. S. Gilchrist & W. R. Engels, 1991. High levels of recombination induced by homologous P-elements in Drosophila melanogaster. Mol. Gen. Genet. 225: 443–447.

    Google Scholar 

  • Sved, J. A., W. B. Eggleston & W. R. Engels, 1990. Germ-line and somatic recombination induced by in vitro modified P-elements in Drosophila melanogaster. Genetics 124: 331–337.

    Google Scholar 

  • Syvanen, M., 1984. The evolutionary implications of mobile genetic elements, in Annual Review of Genetics edited by H. L. Roman, A. Campbell and L. M. Sandler. 18: 271–293.

  • Thompson, J. N. Jr. & R. C. Woodruff, 1980. Increased mutation in crosses between geographically separated strains of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 77: 1059–1062.

    Google Scholar 

  • Thompson, J. N. Jr., R. C. Woodruff & G. B. Schaefer, 1978. An assay of somatic recombination in male recombination lines of Drosophila melanogaster. Genetica 49: 77–80.

    Google Scholar 

  • Tsubota, S. & P. Schedl. 1986. Hybrid dysgenesis-induced revertrants of insertions at the 5′ end of the rudimentary gene in Drosophila melanogaster: Transposon-induced control mutations. Genetics 114: 165–182.

    Google Scholar 

  • Venugopal, S., S. N. Guzder & W. A. Deutsch. 1990. Apurinic endonuclease activity from wild-type and repair-deficient mei-9 Drosophila ovaries. Mol. Gen. Genet. 221: 421–426.

    Google Scholar 

  • Voelker, R. A., A. L. Greenleaf, H. Gyrukovics, G. B. Wisely, S. Huang & L. L. Searles, 1984. Frequent imprecise excision among reversions of a P element-caused lethal mutation in Drosophila. Genetics 107: 279–294.

    Google Scholar 

  • Woodruff, R. C., J. M. Mason, R. Valencia & S. Zimmering, 1985. Chemical mutagenesis testing in Drosophila. V. Results of 53 coded compounds tested for the National Toxicology Program. Environ. Mutagen. 7: 677–702.

    Google Scholar 

  • Woodruff, R. C., J. N. Thompson Jr. & R. F. Lyman, 1979. Intraspecific hybridization and the release of mutator activity. Nature 278: 277–279.

    Google Scholar 

  • Wurgler, F. E., F. H. Sobels & E. Vogel, 1984. Drosophila as an assay system for detecting genetic changes, pp. 555–601 in Handbook of Mutagenicity Test Procedures, edited by B. J. Kilbey, M. Legator, W. Nichols and C. Ramel. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodruff, R.C. Transposable DNA elements and life history traits. Genetica 86, 143–154 (1992). https://doi.org/10.1007/BF00133717

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00133717

Key words

Navigation