Skip to main content
Log in

The intracisternal A particle derived solo LTR promoter of the rat oncomodulin gene is not present in the mouse gene

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The rat gene encoding oncomodulin, a small calcium-binding protein related to parvalbumin, is under the control of a solo long terminal repeat (LTR) derived from an endogenous intracisternal A-particle (IAP). This gene was the first example of a mammalian gene regulated in normal cells by a promoter of retroviral origin (see also article by D. Robins and L. Samuelson in this volume). We show here that the oncomodulin LTR is a member of a small subset of sequence related solo LTR elements present in the rat genome and that a full length IAP genome containing LTRs of this type is no longer present in the rat genome. We have assayed the transcriptional activity of the oncomodulin LTR coupled to the human growth hormone gene as a reporter. Transfections in both Hela cells and 293 cells indicate the oncomodulin LTR promoter is sufficient to efficiently initiate transcription. In 293 cells (human embryo kidney cells transformed with human adenovirus type 5 DNA), the oncomodulin LTR is a strong promoter, capable of bidirectional transcription. Finally, we have determined the structure and the sequence of the mouse oncomodulin gene. Our results suggest that the integration of the IAP particle genome within the rat oncomodulin gene occurred after the rat and the mouse became distinct species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banville, D. & Y. Boie, 1989. Retroviral long terminal repeat is the promoter of the gene encoding the tumor-associated calcium-binding protein oncomodulin in the rat. J. Mol. Biol. 207: 481–490.

    Google Scholar 

  • Brewer, L. M. & J. P. MacManus, 1985. Localisation and synthesis of the tumor protein oncomodulin in extraembryonic tissues of the fetal rat. Devl. Biol. 112: 49–58.

    Google Scholar 

  • Brewer, L. M. & J. P. MacManus, 1987. Detection of oncomodulin, an oncodevelopmental protein in human placenta and choriocarcinoma cell lines. Placenta 8: 351–363.

    Google Scholar 

  • Ben-David, L. D. Aberdam, L. Sachs & C. Blatt, 1991. A deletion and a rearrangement distinguish between the intracisternal A-particle of Hox 2.4 and that of interleukin-3 in the same leukemia cells. Virology 182: 382–387.

    Google Scholar 

  • Blankenstein, T. Z. Qin, W. Li & T. Diamantstein, 1990. DNA rearrangement and constitutive expression of the interleukin-6 gene in a mouse plasmacytoma. J. Exp. Med. 171: 965–970.

    Google Scholar 

  • Canaani, E., O. Dreazen, A. Klar, G. Rechavi, D. Ram, J. B. Cohen & D. Givol, 1983, Activation of the c-mos oncogene in a mouse plasmacytoma by insertion of an endogenous intracisternal A-particle genome. Proc. Natl. Acad. Sci. USA 80: 7118–7122.

    Google Scholar 

  • Chang-Yeh, A., D. E. Mold & R. C. C. Huang 1991. Identification of a novel murine IAP-promoted placenta-expressed gene. Nucleic Acids Res. 19: 3667–3672.

    Google Scholar 

  • Chen, E. Y. & P. H. Seeburg, 1985. Supercoiling sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4: 165–170.

    Google Scholar 

  • Chirgwin, J. M., A. E. Przybyla, R. J. MacDonald & W. J. Rutter, 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18: 5294–5299.

    Google Scholar 

  • Christy, R. J. & R. C. C. Huang, 1988. Functional analysis of the long terminal repeats of intracisternal A-particle genes: sequences within the U3 region determine both the efficiency and direction of promoter activity. Mol. Cell. Biol. 8: 1093–1102.

    Google Scholar 

  • DeNoto, F. M., D. D. Moore & H. M. Goodman, 1981. Human growth hormone DNA sequence and mRNA structure: possible alternative splicing. Nucleic Acids Res. 9: 3719–3730.

    Google Scholar 

  • Devine, J. M., A. S. Tsang & J. G. Williams, 1982. Differential expression of the members of the discoidin I multigene family during growth and development of Dictyostelium discoideum. Cell 28: 793–800.

    Google Scholar 

  • Djaffar, I., L. Dianoux, S. Leibovich, L. Kaplan, R. Emanoil-Ravier & J. Peries, 1990. Detection of IAP related transcripts in normal and transformed rat cells. Biochem. Biophys. Res. Commun. 169: 222–231.

    Google Scholar 

  • Emi, M., A. Horii, N. Tomita, T. Nishide, M. Ogawa, T. Mori & K. Matsubara, 1988. Overlapping two genes in human DNA: a salivary amylase gene overlaps with a gamma actin pseudogene that carries an integrated human endogenous retroviral DNA. Gene 62: 229–235.

    Google Scholar 

  • Feinberg, A. P. & B. Vogelstein, 1984. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137: 266–267.

    Google Scholar 

  • Furter, C. S., C. W. Heizmann & M. W. Berchtold, 1989. Isolation and analysis of a rat genomic clone containing a long terminal repeat with high similarity to the oncomodulin mRNA leader sequence. J. Biol. Chem. 264: 18276–18279.

    Google Scholar 

  • Gillen, M., D. Banville, R. G. Rutledge, S. Narang, V. L. Seligy, J. F. Whitfield & J. P. MacManus, 1987. A complete complementary DNA for the oncodevelopmental calcium-binding protein, oncomodulin. J. Biol. Chem. 262: 5308–5312.

    Google Scholar 

  • Graham, F. L. & A. J.Van der Eb, 1973. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virol. 52: 456–467.

    Google Scholar 

  • Graham, F. L., J. Smiley, W. C. Russell & R. Nairm, 1977. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36: 59–74.

    Google Scholar 

  • Hawley, R. G., M. J. Shulman & N. Hozumi, 1984. Transposition of two different intracisternal A-particle elements into an immunoglobulin kappa-chain gene. Mol. Cell. Biol. 4: 2565–2572.

    Google Scholar 

  • Holmes, D. S. & M. Quigley, 1981. A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem. 114: 1934–197.

    Google Scholar 

  • Horowitz, M., S. Luria, G. Rechavi & D. Givol, 1984. Mechanism of activation of the mouse c-mos oncogene by the LTR of an intracisternal A-particle gene. EMBO J. 3: 2937–2943.

    Google Scholar 

  • Kongsuwan, K., J. Allen & J. M. Adams, 1989. Expression of Hox-2,4 homeobox gene directed by proviral insertion in a myeloid leukemia. Nucleic Acids Res. 17: 1881–1892.

    Google Scholar 

  • Kuff, E. L., A. Feenstra, K. K. Lueders, L. Smith, R. Haroley, N. Hozumi & M. Shulman, 1983a. Intracisternal A-particle genes as movable elements in the mouse genome. Proc. Natl. Acad. Sci. USA 80: 1992–1996.

    Google Scholar 

  • Kuff, E. L., A. Feenstra, K. K. Lueders, G. Rechavi, D. Givol & E. Canaani, 1983b. Homology between an endogenous viral LTR and sequences inserted in an activated cellular oncogene. Nature (London) 302: 547–548.

    Google Scholar 

  • Kuff, E. L. & K. K. Lueders, 1988. The intracisternal A-particle gene family: structure and functional aspects. Adv. Cancer Res. 51: 183–276.

    Google Scholar 

  • Leslie, K. B., F. Lee & J. W. Schrader, 1991. Intracisternal A-type particle mediated activations of cytokine genes in a murine myelomonocytic leukemia: generation of functional cytokine mRNAs by retroviral splicing events. Mol. Cell. Biol. 11: 5562–5570.

    Google Scholar 

  • Lueders, K. K. & E. L. Kuff, 1983. Comparison of the sequence organisation of related retrovirus-like multigene families in three evolutionary distant rodent genomes. Nucleic Acids Res. 11: 4391–4408.

    Google Scholar 

  • Lueders, K. K., J. W. Fewell, E. L. Kuff & T. Koch, 1984. The long terminal repeat of an endogenous intracisternal A-particle gene functions as a promoter when introduced into eucaryotic cells by transfection. Mol. Cell. Biol. 4: 2128–2135.

    Google Scholar 

  • Luria, S. & M. Horowitz, 1986. The long terminal repeat of the intracisternal A-particle as a target for transposition by oncogene products. J. Virol. 57: 998–1003.

    Google Scholar 

  • MacManus, J. P., J. F. Whitfield, A. L. Boyton, J. P. Durkin & S. H. H. Swieranga, 1982. Oncomodulin-A widely distributed, tumour-specific calcium-binding protein. Oncodevl. Biol. Med. 3: 79–90.

    Google Scholar 

  • MacManus, J. P., J. F. Whitfield & D. J. Stewart, 1984. The presence in human tumours of a M, 11,700 calcium-binding protein similar to rodent oncomodulin. Cancer Lett. 21: 309–315.

    Google Scholar 

  • MacManus, J. P., L. M. Brewer & D. Banville, 1990. Oncomodulin in normal and transformed cells, pp. 107–110 in Calcium Binding Protein in Normal and Transformed Cells, edited by R. Pochet, D. E. M. Lawson and C. W. Heizmann. Plenum Press.

  • Mes-Masson, A. M., S. Masson, D. Banville & L. Chalifour, 1989. Expression of oncomodulin does not lead to transformation or immortalisation of mammalian cells in vitro. J. Cell. Sci. 94: 517–525.

    Google Scholar 

  • Mietz, J. A., Z. Grossman, K. K. Lueders & E. L. Kuff, 1987. Nucleotide sequence of a complete mouse intracisternal A-particle genome: relationship to known aspects of particle assembly and function. J. Virol. 61: 3020–3029.

    Google Scholar 

  • Mullis, K. B. & F. A. Faloona, 1987. Specific synthesis of cDNA in vitro via a polymerase-catalysed chain reaction. Methods Enzymol. 155: 335–350.

    Google Scholar 

  • Ono, M. & H. Ohishi, 1983. Long terminal repeat sequences of intracisternal A-particle genes in the Syrian hamster genome: identification of tRNAPhe as a putative primer tRNA Nucleic Acids Res. 11: 7169–7179.

    Google Scholar 

  • Saiki, R. K., S. Scharf, F. A. Faloona, K. B. Mullis, G. T. Horn, H. A. Erlich & N. Arnheim, 1985. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnostic of sickle cell anemia. Science 230: 1350–1354.

    Google Scholar 

  • Sambrook, J., E. F. Fritsch & T. Maniatis, 1982. Molecular cloning-A laboratory manual. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York.

    Google Scholar 

  • Samuelson, L. C., K. Wiebauer, C. M. Snow & M. H. Meisler, 1990. Retroviral and pseudogene insertion sites reveal the lineage of human salivary and pancreatic amylase genes from a single during primate evolution. Mol. Cell. Biol. 10: 2513–2520.

    Google Scholar 

  • Selden, R. F., K. Burke Howie, M. E. Rowe, H. M. Goodman & D. D. Moore, 1986. Human growth hormone as a reporter gene in regulation studies employing transient gene expression. Mol. Cell Biol. 6: 3173–3179.

    Google Scholar 

  • Stavenhagen, J. B. & D. M. Robins, 1988. An ancient provirus has imposed androgen regulation on the adjacent mouse sex-limited protein gene. Cell 55: 247–254.

    Google Scholar 

  • Ymer, S., W. Q. Tucker, C. J. Sanderson, A. J. Hapel, H. D. Campbell & I. J. Young, 1985. Constitutive synthesis of interleukin-3 by leukemia cell line WEHI-3B is due to retroviral insertion near the gene. Nature (London) 317: 255–258.

    Google Scholar 

  • Ymer, S., W. Q. Tucker, H. D. Campbell & I. G. Young, 1986. Nucleotide sequence of the intracisternal A-particle genome inserted 5′ to the interleukin-3 gene of the leukemia cell line WEHI-3B. Nucleic Acids Res. 14: 5901–5918.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banville, D., Rotaru, M. & Boie, Y. The intracisternal A particle derived solo LTR promoter of the rat oncomodulin gene is not present in the mouse gene. Genetica 86, 85–97 (1992). https://doi.org/10.1007/BF00133713

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00133713

Key words

Navigation