Skip to main content
Log in

Allozyme polymorphisms, outerossing rates, and hybridization of South AmericanNothofagus

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Electrophoretically detectable genetic variation was used to describe the genetic structure of three South American species ofNothofagus: the widespreadN. betuloides andN. dombeyi, and the geographically restrictedN. nitida. Although the widespread species possess higher levels of genetic variation, the three species have more genetic variation within than among populations. These results are consistent with the theoretical expectations for woody, presumably highly outerossed species with wind-borne seeds.

Estimates of outcrossing rates from progeny arrays yielded slightly higher average t-values forN. nitida (1.158) andN. dombeyi (range 0.873–1.045) than forN. betuloide (0.878). Hierarchical analysis of population structure revealed values of FIS and FIT that were positive and significantly different from zero at most loci and for each species. The levels of inbreeding detected by F-statistics indicate some degree of self-fertilization and/or population substructuring into discrete family groups. Reduced seed vagility and regeneration of natural stands after disturbance by a few remnant individuals would probably generate the recruitment of related seedlings underneath parent trees.

The analysis of a putative hybrid population betweenN. nitida andN. betuloides indicated that individuals clearly segregated intonitida-like orbetuloides- like individuals. The reduced outcrossing rate ofbetuloides-like individuals from the hybrid site (t=0.585) is interpreted in concert with low pollen availability and the increased probability of selfing and/or hybridization inNothofagus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, E., 1949. Introgressive Hybridization. Wiley, N.Y.

    Google Scholar 

  • Anderson, E., 1953. Introgressive Hybridization. Biol. Rev. Cambridge Philos. Soc. 28: 280–307.

    Google Scholar 

  • Barber, H.N., 1970. Hybridization and the evolution of plants. Taxon 19: 154–160.

    Google Scholar 

  • Brown, A.H.D., S.C.H. Barret & G.F. Moran, 1984. Mating system estimation in forest trees: models, methods and meanings, pp. 32–49 in Population Genetics in Forestry, Proceedings of the Meeting of the IUFRO Working Party ‘Ecological and Population Genetics’, Göttingen, edited by S. Levin. Springer-Verlag, Berlin.

    Google Scholar 

  • Clegg, M.T., 1980. Measuring plant mating systems. Bioscience 30: 814–818.

    Google Scholar 

  • Conkle, M.T., P.D. Hodgskiss, L.B. Nunnally & S.C. Huater, 1982. Starch gei electrophoresis of conifer seeds: a laboratory manual, Genéral technical report PSW-64. Pacific Southwest Forest and Range Experimental Station, Forest Service, U.S.D.A., Berkeley.

    Google Scholar 

  • Crawford, D.J., 1983. Phylogenetic and systematic inferences from electrophoretic studies, pp 257–287 in Isozymes in Plant Genetics and Breeding, part A, edited by S.D. Tanksley and T.J. Orton. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Cruzan, M.B., J.L. Hamrick, M.L. Arnold & B.D. Bennet, 1994. Mating system variation in hybridizing irises: effects of phenology and floral densities on family outcrossing rates. Heredity 72: 95–105.

    Google Scholar 

  • dePamphilis, C.W. & R. Wyatt, 1990. Electrophoretic confirmation of interspecific hybridization inAesculus (Hippocastaneaceae) and the genetic structure of a broad hybrid zone. Evolution 44: 1295–1317.

    Google Scholar 

  • Donoso, C., 1987. Variación natural en especies deNothofagus en Chile. Bosque 8: 85–97.

    Google Scholar 

  • Donoso, C. & J. Atienza, 1983. Hibridación, natural entre especies doNothofagus siempreverdes en Chile. Bosque 1: 21–34.

    Google Scholar 

  • Donoso, C. & J. Atienza, 1984. Hibridación natural entreNothofagus betuloides (Mirb.) Oerst.y Nothofagus nitida (Phil.)Krasser. Medio Ambiente 7: 9–16.

    Google Scholar 

  • Gibson, J.P. & J.L. Hamriek, 1991. Genetic diversity and structure inPinus pungens (Table Mountain pine) populations. Can. J. For. Res. 21: 635–642.

    Google Scholar 

  • Gottlieb, L.D., 1981. Electrophoretic evidence and plant populations. Progress in Phytochem. 7: 1–46.

    Google Scholar 

  • Gottlieb, L.D., 1988. Towards molecular genetics inClarkia: gene duplications and molecular characterization of PGI genes. Ann. Missouri Bot. Gard. 75: 1169–1179.

    Google Scholar 

  • Haase, P., 1992. Isozyme variability and biogeography ofNothofagus truncata (Fagaceae). New Zealand J. Bot. 30: 315–328.

    Google Scholar 

  • Haase, P., 1993. Isozyme studies of New ZealandNothofagus species (southern beech) using leaf extracts. Silvae. Genet. 42: 46–51.

    Google Scholar 

  • Haase, P., 1994. Genetic relationships and inferred evolutionary divergence in the New Zealand taxa ofNothofagus. Results from isozyme analysis. Aust. Syst. Bot. 7: 47–55.

    Google Scholar 

  • Hamrick, J.L., M.J.W. Godt & S.L. Sherman-Broyles, 1992. Factors influencing levels of genetic diversity in woody plant species. New For. 6: 95–124.

    Google Scholar 

  • Levin, D.A., 1975. Interspecific hybridization, heterozygosity and gene exchange inPhlox. Evolution 29: 37–51.

    Google Scholar 

  • Levin, D.A., 1977. The organization of genetic variability inPhlox drummondii. Evolution 31: 477–494.

    Google Scholar 

  • Li, C.C. & D.G. Horvitz, 1953. Some methods of estimating the inbreeding coefficient. Am. J. Hum. Genet. 5: 107–117.

    Google Scholar 

  • Linhart, Y.B., J.B. Mitton, K.B. Sturgeon & M.L. Davis, 1981. Genetic variation in space and time in a population of Ponderosa pinc. Heredity 46: 407–426.

    Google Scholar 

  • Millar, C.V., 1983. A step cline inPinus muriata. Evolution 37: 311–319.

    Google Scholar 

  • Mitton, J. B., 1983. Conifers, pp. 443–472 in Isozymes in Plant Genetics and Breeding, Part B, edited by S.D. Tanksley and Orton. Elsevier Science Publishers. Amsterdam.

    Google Scholar 

  • Mitton, J. B., Y.B. Linhart, K.B. Sturgeon & J.L. Hamrick, 1979. Allozyme polymorphisms detected in mature needle tissues of ponderosa pine. J. Heredity 70: 86–89.

    Google Scholar 

  • Nei, M., 1973. Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. USA 70: 3321–3323.

    Google Scholar 

  • Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.

    Google Scholar 

  • Poole, A.L., 1950. Studies of New ZealandNothofagus. I. Taxonomy and floral morphology. Trans. Roy. Soc. New Zealand 78: 363–380.

    Google Scholar 

  • Premoli, A.C., 1994. Genetic, morphological, and ecophysiological variation in geographically restricted and widespread species ofNothofagus from southern South America. Ph.D. Thesis, University of Colorado.

  • Rajora, O.P., 1990. Marker allozyme genes and alleles for differentiation ofPopulus deltoides, P. Nigra, P. maximiwiczli and their interspecific hybrids. Can. J. Bot. 68: 990–998.

    Google Scholar 

  • Rajora, O.P. & B. P. Dancik, 1992. Allozyme variation and inheritance in leaves ofPopulus deltoides, P. nigra, P. maximowiczii andP. x canadensis in comparison to those in root tips. Silvae Genet. 41: 289–292.

    Google Scholar 

  • Ranker, T.A., C.H. Haufler, P.S. Soltis & D.E. Soltis, 1989. Genetic evidence for allopolyploidy in the neotropical fernHemionitis pinnitifida (Adiantaceae) and the reconstruction of an ancestral genome. Sys. Bot. 14: 439–447.

    Google Scholar 

  • Rieseberg, L.H. & D.A. Warner, 1987. Electrophoretic evidence of hybridization betweenTragopogon mirus andT. miscellus (Compositae). Syst. Bot. 12: 2281–2285.

    Google Scholar 

  • Ritland, K., 1983. Estimation of mating systems, pp. 289–302 in Isozymes in Plant Genetics and Breeding, part B, edited by S.D. Tanksley and T.J. Orton. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Ritland, K. & S. Jain, 1981. A model for the estimation of outerossing rate and gene frequencies usingn independent loci. Heredity 47: 35–52.

    Google Scholar 

  • Schemske, D.W. & R. Lande, 1985. The evolution of selffertilization and inbreeding depression in plants. II. Empirical observations. Evolution 39: 41–52.

    Google Scholar 

  • Selander, R.K., M.H. Smith, S.Y. Yang. W.E. Johnson & J.B. Gentry, 1971. IV. Biochemical polymorphism and systematics in the genusPeromyscus. I. Variation in the old-field mouse (Peromyscus polionotus), pp. 49–90, in Studies in Genetics VI. Univ, Texas Publ. 7103.

  • Sokal, R.R. & F.J. Rohlf, 1981. Biometry. The Principles and Practice of Statistics in Biological Research. 2nd Edition. W.H. Freeman and Company, New York.

    Google Scholar 

  • Soltis, D.E., C.H. Haufler, D.C. Darrow & G.J. Gastony, 1983. Starch gel electrophoresis of ferns: A compilation of grinding buffers, gel and electrode buffers, and staining schedules. Amer. Fern J. 73: 9–27.

    Google Scholar 

  • Soltis, P.S., D.E. Soltis & L.D. Gottlieb, 1987. Phosphoglucomutase gene duplications inClarkia (Onagraceae) and their phylogenetic implications. Evolution 41: 667–671.

    Google Scholar 

  • Stebbins, G.L., 1959. The role of hybridization in evolution. Proc. Am. Philos. Soc. 103: 231–251.

    Google Scholar 

  • Stebbins, G.L., 1969. The significance of hybridization for plant taxonomy and evolution. Taxon 18: 26–35.

    Google Scholar 

  • Veblen, T.T. & D.H. Ashton, 1978. Catastrophic influences on the vegetation of the Valdivian Andes, Chile. Vegetatlo 36: 147–167.

    Google Scholar 

  • Veblen, T.T. & D.C. Lorenz, 1987. Post-fire stand development ofAustrocedrus-Nothofagus forests in northern Patagonia. Vegetatio 71: 113–126.

    Google Scholar 

  • Veblen, T.T., C. Donoso, T. Kitzberger & A.J. Rebertus. Ecology of southern Chilean and ArgentineanNothofagus forests, in Ecology and Biogeography ofNothofagus forests, edited by T.T. Veblen, R.S. Hill and J. Read. Yale University Press. In press.

  • Wardle, J.A., 1984. The New Zealand Beches, New Zealand Forest Service.

  • Weir, B.S., 1990. Genetic Data Analysis. Sinauer Associates, Inc. Publishers, Sunderland, Massachusetts.

    Google Scholar 

  • Werth, C.R., S.I. Guttman & W.H. Eshbaugh, 1985. Electrophoretic evidence of reticulate evolution in the AppalachianAsplenium complex. Syst. Bot. 10: 184–192.

    Google Scholar 

  • Wheeler, N.C. & R.P. Guries, 1987. A quantitative measure of introgression between lodgepole and jack pines. Can. J. Bot. 65: 1876–1885.

    Google Scholar 

  • Whittham, T.G., P.A. Morrow & B.M. Potts, 1991. Conservation of hybrid plants. Science 254: 779–780.

    Google Scholar 

  • Workman, P.L. & J.D. Niswander, 1970. Population studies on Southwestern Indians. II. Local genetic differentiation in the Papago. Amer. J. Human Genet. 22: 24–49.

    Google Scholar 

  • Wright, S., 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19: 395–420.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Premoli, A.C. Allozyme polymorphisms, outerossing rates, and hybridization of South AmericanNothofagus . Genetica 97, 55–64 (1996). https://doi.org/10.1007/BF00132581

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00132581

Key words

Navigation