Skip to main content
Log in

Transgenic models of myocardial dysfunction

  • Clinical Reviews
  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Transgenic Technology (TT), is an important tool in the molecular biology arena. It allows one to generate new strains of mice in which a genetic construct is expressed. The construct can be made with a promoter that allows for the targeted expression of a gene of interest to a given part of the cardiovascular system. By so doing, it is possible to modify a given physiologic function and to better understand the structural and functional relationships. This so-called “reverse physiology” is becoming extensively utilized in cardiac research. Another possibility is to use this technology to analyze which part of a promoter is responsible for the transcriptional regulation. In that case, the coding sequence is a gene not normally expressed in the tissue and is called the reporter. Mice are generally used for such a purpose because of their cost. Consequently the physiology of the mouse has been developed using microtechnologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fishman GI. Conditional transgenesis. Trends Cardiovasc Med 1995;5:211–217.

    Google Scholar 

  2. Franz WM, Frey N, Müller O, Kübler W, Katus HA. Transgene tiermodelle: Neue môglichkeiten für die Herz-Kreislauf-Forschung. Z Kardiol 1995;84 (suppl 4):17–32.

    Google Scholar 

  3. Grosveld F, Kollias G. Transgenic Animals. Academic Press. London, 1992.

    Google Scholar 

  4. Paul M, Franz WM. Transgenic models for hypertension research. Trends Cardiovasc Med 1995;5:108–114.

    Google Scholar 

  5. Vikstrom KL, Leinwand LA. Transgenic mice: A tool for altering the cell and molecular biology of the heart. Heart Failure 1995;11:39–47.

    Google Scholar 

  6. Field LJ. Cardiovascular research in transgenic animals. Trends Cardiovasc Med 1992;2:237–245.

    Google Scholar 

  7. Field LJ. Atrial natriuretic factor SV40 T antigen transgenes produce tumors and cardiac arrhythmias in mice. Science 1998;239:1029–1033.

    Google Scholar 

  8. Bertin B, Mansier P, Makeh I, Briand P, Rostene W, Swynghedauw B, Strosberg D. Specific atrial overexpression of functional human B1-adrenergic receptors in transgenic mice. Cardiovasc Res 1993;27:1606–1612.

    Google Scholar 

  9. Milano CA, Allen LF, Rockman HA, Dolber PC, McMinn TR, Chien KR, Johnson TD, Bond RA, Lefkowitz RJ. Enhanced myocardial function in transgenic mice overexpressing the B2-adrenergic receptor. Science 1994;264:582–586.

    Google Scholar 

  10. Katz EB, Steinhelper ME, Delcarpio JB, Daud AI, Claycomb WC, Field LJ. Cardiomyocyte proliferation in mice expressing α-cardiac myosin heavy chain-SV 40 T antigen transgenes. Am J Physiol 1992;262:H1867-H1876.

    Google Scholar 

  11. Franz WM, Breves D, Klingel K, Brem G, Hofschneider PH, Kandolf R. Heart-specific targeting of firely luciferase by the myosin light chain-2 promoter and developmental regulation in transgenic mice. Circ Res 1993;73:629–638.

    Google Scholar 

  12. Deleon JR, Federoff HJ, Dixon DW, Vikstrom KL, Fishman GI. Cardiac and skeletal myopathy in β-myosin heavy chain simian virus-tsA58 transgenic mice. Proc Natl Acad Sci USA 1994;91:519–523.

    Google Scholar 

  13. Rindt H, Gulick J, Knotts S, Neumann J, Robbins J. In vivo analysis of the murine β-myosin heavy chain gene promoter. J Biol Chem 1993;268:5332–5338.

    Google Scholar 

  14. Johnson JE, Wold BJ, Hauschka SD. Muscle creatine kinase sequence elements regulating skeletal and cardiac muscle expression in transgenic mice. Mol Cell Biol 1989;9:3393–3399.

    Google Scholar 

  15. Shani M. Tissue-specific expression of rat myosin light chain 2 in transgenic mice. Nature 1985;314:283–286.

    Google Scholar 

  16. Brennan KJ, Hardeman EC. Quantitative analysis of the human-skeletal actin gene in transgenic mice. J Biol Chem 1993;268:719–725. 1993.

    Google Scholar 

  17. Parsons WJ, Richardson JA, Graves KH, Williams RS, and Moreadith RW. Gradients of transgenic expression directed by the human myoglobin promoter in the developing mouse heart. Proc Natl Acad Sci USA 1990;90:1726–1730.

    Google Scholar 

  18. Bedalov A, Breault CT, Sokolov BP, Lichtler AC, Bedalov I, Clark SH, Mack K, Khillan JS, Woody CO, Kream BE, Rowe DW. Regulation of the α1(I) collagen promoter in vascular smooth muscle cells: Comparison with other α1(I) collagen-producing cells in transgenic animals and cultured cells. J Biol Chem 1994;269:4903–4909.

    Google Scholar 

  19. Blank RS, McQuinn TC, Yin KC, Thomson MM, Takayasu K, Schwartz RJ, Owens GK. Elements of the smooth muscle α-actin promoter required in cis for transcriptional activation in smooth muscle: Evidence for cell-specific regulation. J Biol Chem 1992;267:984–989.

    Google Scholar 

  20. Lee ME, Bloch KD, Clifford JA, Quartermous T. Functional analysis of the endothelin-1 gene promoter: Evidence for an endothelial cell-specific cis-acting sequence. J Biol Chem 1990;265:10446–10450.

    Google Scholar 

  21. Mercadier JJ, Samuel JI, Michel JB, Zongaro MA, De LaBastie D, Lompre AM, Wisnewsky C, Rappaport L, Schwartz K. Atrial natriuretic factor gene expression in rat ventricle during experimental hypertension in rat ventricle during experimental hypertension. Am J Physiol 1989;257: H979-H987.

    Google Scholar 

  22. Swynghedauw B. Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscle. Physiol Rev 1986;66:710–771.

    Google Scholar 

  23. Ganten D, Wagner J, Zeh K, Bader M, Michel JB, Paul M, Zimmermann F, Ruf P, Hilgenfeldt U, Ganten U, Kaling M, Bachmann S, Fukamizu A, Mullins JJ, Murakami K. Species specificity of renin kinetics in transgenic rats harboring the human renin and angiotensinogen gene. Proc Natl Acad Sci USA 1992;89:7806–7810.

    Google Scholar 

  24. Pepin MC, Pothier F, Barden N. Impaired type II glucocorticoid-receptor function in mice bearing antisense RNA transgene. Nature 1992;355:725–728.

    Google Scholar 

  25. Swynghedauw B. Molecular Cardiology for the Cardiologist. Kluwer Pub., Boston, 1995.

    Google Scholar 

  26. Chien S (ed.). Molecular Biology of the Cardiovascular System. Lea and Febiger, Pubs., Philadelphia, 1990.

    Google Scholar 

  27. Erdôs T, Butler-Browne GS, Rappaport L. Mechanogenetic regulation of transcription. Biochimie (Paris) 1991;73:1217–11231.

    Google Scholar 

  28. Capecchi MR. The new mouse genetics: Altering the genome by gene targeting. TIG 1989;5:70.

    Google Scholar 

  29. Schilham MW, Oosterwegel MA, Moerer P, Ya P, deBoer PAJ, van deWetering M, Verbeek S, Lamers WH, Kruisbeek AM, Cumano A, Clevers H. Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking Sox-4. Nature 1996;380:711–714.

    Google Scholar 

  30. Clairambault J, Mansier P, Swynghedauw B. Effects of parasympathetic blockade on non-linear dynamics of heart rate in mice. IEEE/EMBS Conference, Montreal, Canada. 21 September 1995. Poster Session 1.1.4.

  31. Mansier P, Gounaropoulou A, Chevalier B, Charlotte N, Müdigue C, Vermeiren C, Swynghedauw B. Regulation of heart rate in normal mice. Meeting of the American Section of ISHR, Chicago, June 10–13, 1996.

  32. Mansier P, Müdigue C, Charlotte N, Vermeiren C, Coraboeuf E, Deroubai E, Ratner E, Chevalier B, Clairambault J, Carrü F, Dahkli T, Bertin B, Briand P, Strosberg D, Swynghedauw B. Decreased heart rate variability in transgenic mice overexpressing atrial B1-adrenoceptors. Am J Physiol 1996;271:H1465-H1472.

    Google Scholar 

  33. Rockman HA, Ono S, Ross RS, Jones LR, Karimi M, Bhargawa V, Ross JJr, Chien KR. Molecular and physiological alterations in murine ventricular dysfunction. Proc Natl Acad Sci USA 1994;91:2694–2698.

    Google Scholar 

  34. Manning WJ, Wei JY, Katz SE, Litwin SE, Douglas PS. In vivo assessment of LV mass in mice using high-frequency cardiac ultrasound. Necropsy validation. Am J Physiol 1994;266:H1672-H1675.

    Google Scholar 

  35. Gardin JM, Siri FM, Kitsis RN, Edwards JG, Leinward LA. Echocardiographic assessment of left ventricular mass and systolic function in mice. Circ Res 1995;76:907–914.

    Google Scholar 

  36. Hewett TE, Grupp IL, Grupp G, Robbins J. α-skeletal actin is associated with increased contractility in the mouse heart. Circ Res 1995;76:907–746.

    Google Scholar 

  37. Grupp IL, Subramanian A, Hewett TE, Robbions J, Grupp G. Comparison of normal, hypodynamic, and hyperdynamic mouse hearts using isolated work-performing heart preparations. Am J Physiol 1993;265:H1401-H1410.

    Google Scholar 

  38. Palermo J, Gulick J, Ng W, Grupp IL, Grupp G, Robbins J. Remodeling the mammalian heart using transgenesis. Cell Mol Biol Res 1995;41:501–509.

    Google Scholar 

  39. Ng WA, Grupp IL, Subramaniam A, Robbins J. Cardiac myosin heavy chain mRNA expression and myocardial function in the mouse heart. Circ Res 1991;69:1742–1750.

    Google Scholar 

  40. Hampton TG, Morgan JP, and Brooks W. Calcium handling in the isolated heart of the mouse. Circulation 1995;92:1–236.

    Google Scholar 

  41. Robbins RJ, Swain JL. c-myc protooncogene modulates cardiac hypertrophic growth in transgenic mice. Am J Physiol 1992;262:H590-H597.

    Google Scholar 

  42. Dorn GW, Robbins J, Ball N, Walsh RA. Myosin heavy chain regulation and myocyte contractile depression after LV hypertrophy in aortic-banded mice. Am J Physiol 1994;267: H400-H405.

    Google Scholar 

  43. Henderson AH, Craig RJ, Sonnenblick EH, and Urschel CW. Species differences in intrinsic myocardial contractility. Proc Soc Exper Biol Med 1970;134:932–939.

    Google Scholar 

  44. Yamazaki T, Komuro I, Nagai R, and Yamazaki Y. Stretching, the evidence in the case of cardiac growth. Cardiovasc Res 1996;31:493–498.

    Google Scholar 

  45. Jackson T, Allard MF, Sreenan CM, Doss LK, Bishop SP, Swain JL. The c-myc protooncogene regulated cardiac development in transgenic mice. Mol Cell Biol 1990;10:3709–3716.

    Google Scholar 

  46. Hunter JJ, Tanaka N, Rockman HA, Ross JJr, Chien KR. Ventricular expression of a MLC-2v-ras fusion gene induces cardiac hypertrophy and selective diastolic dysfunction in transgenic mice. J Biol Chem 1995;270:23173–23178.

    Google Scholar 

  47. Chow LH, Yee SP, Pawson T, McManus BM. Progressive cardiac fibrosis and myocyte injury in v-fps transgenic mice. A model for primary disorders of connective tissue in the heart. Lab Invest 1991;64:457–462.

    Google Scholar 

  48. Hirota H, Yoshida K, Kishimoto T, Taga T. Continuous activation of gp130, a signal-transducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice. Proc Natl Acad Sci USA 1995;92:4862–4866.

    Google Scholar 

  49. Edwards JG, Lyons GE, Micales BK, Malhotra A, Factor S, Leinwand LA. Cardiomyopathy in transgenic myf5 mice. Circ Res 1996;78:379–387. 1996.

    Google Scholar 

  50. Miner J, Miller J, Wold B. Skeletal muscle phenotypes initiated by ectopic MyoD in transgenic mouse heart. Development 1992;114:853–860.

    Google Scholar 

  51. Chalifour LE, Gomes ML, Wang N-S, Mes-Masson AM. Polyomavirus large T-antigen expression in heart of transgenic mice causes cardiomyopathy. Oncogene 1990;5:1719–1726.

    Google Scholar 

  52. Milano CA, Dolber PC, Rockman HA, Bond RA, Venable ME, Allen LF, Lefkowitz RJ. Myocardial expression of a constitutively active α1 B-adrenergic receptor in transgenic mice induces cardiac hypertrophy. Proc Natl Acad Sci USA 1994;91:10109–10113.

    Google Scholar 

  53. Huen DS, Fox A, Kumar P, Searle PF. Dilated heart failure in transgenic mice expressing the Epstein-Barr virus antigen-leader protein. J Gen Virol. 1993;74:1381–1391.

    Google Scholar 

  54. Gruver CL, DeMayo F, Goldstein MA, et al. Targeted developmental overexpression of calmodulin induces proliferative and hypertrophic growth of cardiomyocytes in transgenic mice. Endocrinology 1993;133:376–388.

    Google Scholar 

  55. Vikstrom KL, Factor SM, Leinwand LA. A murine model for hypertrophic cardiomyopathy. Z Kardiol 1995;84 (Suppl 4): 49–54.

    Google Scholar 

  56. Bauters C, Moalic J, Bercovici J, Mouas C, Emanoil-Ravier R, Schiaffino S, Swynghedauw B. Coronary flow as a determinant of c-myc and c-fos proto-oncogene expression in an isolated adult rat heart. J Mol Cell Cardiol. 1988;20:97–101.

    Google Scholar 

  57. Dubus I, Samuel JI, Marotte F, Delcayre C, Rappaport L. Beta-adrenergic agonists stimulate the synthesis of noncontractile but not contractile proteins in cultured myocytes isolated from adult rat heart. Circ Res 1990;66:867–874.

    Google Scholar 

  58. Moalic JM, Bauters C, Himbert D, Bercovici J, Mouas C, Guicheney P, Baudoin-Legros M, Rappaport L, Emanoil-Ravier R, Mezger V, Swynghedauw B. Phenylephrine, vasopressin and angiotensin II as determinants of proto-oncogenes and heat-shock protein gene expression in adult rat heart and aorta. J Hypertension 1989;7:195–201.

    Google Scholar 

  59. Simpson P. Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is an alpha-adrenergic response. J Clin Invest 1983;72:732–738.

    Google Scholar 

  60. Kumar RV, Panniers R, Wolfman A, Henshaw EC. Inhibition of protein synthesis by antagonists of calmodulin in Ehrlich ascites tumor cells. Eur J Biochem 1991;195:313–319.

    Google Scholar 

  61. Schwartz K, Carrier L, Guicheney P, Komajda M. Molecular basis of familial cardiomyopathies. Circulation 1995;91:532–540.

    Google Scholar 

  62. Silverman HS, Haigney MCP, Griffiths EJ, Wei SK, Ocampo CJ, Philipson KD, Stern MD. Excitation-contraction coupling in ventriculocytes from transgenic mice with highlevel expression of canine sarcolemmal sodium-calcium exchange. Circulation 1995;92:I-236.

    Google Scholar 

  63. Luo W, Grupp IL, Harrer J, Ponniah S, Grupp G, Duffy G, Doetschman T, Kranias E. Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of β-agonist stimulation. Circ Res 1994;75:401–409.

    Google Scholar 

  64. Hoit HD, Khowny SF, Kranias EG, Ball N, Walsh RA. In vivo echocardiographic detection of enhanced left ventricular function in gene-targeted mice with phospholamban deficiency. Circ Res 1995;77:632–637.

    Google Scholar 

  65. Kadambi VJ, Ponniah S, Harrer JM, Hoit BD, Dorn GW, Walsh RA, Kranias EG. Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. J Clin Invest 1996;97:533–539.

    Google Scholar 

  66. Mutchuchamy M, Grupp IL, Grupp G, O'Toole BA, Kier AB, Boivin GP, Neumann J, Wieczorek DF. Molecular and physiological effects of overexpressing striated muscle beta-tropomyosin in the adult heart. J Biol Chem 1995;270:30593–30603.

    Google Scholar 

  67. Koch WJ, Rockman HA, Samama P, Hamilton RA, Bound RA, Milano CA, Lefkowitz RJ. Cardiac function in mice overexpressing the β-adrenergic receptor kinase or β-ARK inhibitor. Science 1995;268:1350.

    Google Scholar 

  68. Koch WJ, Milano CA, Lefkowitz RJ. Transgenic manipulations of myocardial G protein-coupled receptor and receptor kinase. Circ Res 1996;78:511–516.

    Google Scholar 

  69. Gaudin C, Ishikawa Y, Wight DC, Mahdavi V, Nadal-Ginard B, Wagner TE, Vatner DE, Homcy CJ. Overexpression of G protein in the hearts of transgenic mice. J Clin Invest 1995;95:1676–1683.

    Google Scholar 

  70. Iwase M, Bishop SP, Uechi M, Vatner DE, Shannon RP, Kudej RK, Wight DC, Wagner TE, Ishikawa Y, Homcy CJ, Vatner SF. Adverse effects of chronic endogenous sympathic drive induced by cardiac G overexpression. Cir. Res 1996;78:517–524.

    Google Scholar 

  71. Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 1995;95:1446–1456.

    Google Scholar 

  72. Besse S, Assayag P, Delcayre C, Carre F, Cheav SI, Lecarpentier Y, Swynghedauw B. Normal and hypertrophied senescent rat heart. Mechanical and molecular characteristics. Am J Physiol 1993;265:H183-H190.

    Google Scholar 

  73. Hirzel H, Tuchsmid C, Sneider J, Krayenbuehl H, Schaub M. Relationship between myosin isoenzyme composition, hemodynamics, and myocardial structure in various forms of human cardiac hypertrophy. Circ Res 1985;57:729–740.

    Google Scholar 

  74. Cummins P. Transitions in human atrial and ventricular myosin light-chain isoenzymes in response to cardiac pressure overload-induced hypertrophy. Biochem J 1982;205: 195–204.

    Google Scholar 

  75. Mansier P, Chevalier B, Barnette DB, Swynghedauw B. Bl-adrenergic and muscarinic receptor densities in compensatory cardiac hypertrophy of the adult rat. Pflügers Arch 1993;424:354–360.

    Google Scholar 

  76. Carrü F, Maisonblanche P, Ollivier L, Mansier P, Chevalier B, Vicuna R, Lessard Y, Coumel P, swynghedauw B. Heart rate variability in two models of cardiac hypertrophy in rats in relation to the new molecular phenotype. Am J Physiol 1994;266:H1872–1878.

    Google Scholar 

  77. Bond RA, Leff P, Johnson TD, Milano CA, Rockman HA, McMinn TR, Apparsundaran S, Hek MF, Kenakin TP, Allen LF, Lefkowitz RJ. Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the B2-adrenoceptor. Nature 1995;374:272–275.

    Google Scholar 

  78. Corvol P, et Charru A (eds.) Génètique des maladies cardiovasculaires. Bristol-Myers Squibb Cardiovasculaire Pub., Paris, 1993.

    Google Scholar 

  79. Brosnan MJ, Mullins JJ. Transgenic animals in hypertension and cardiovascular research. Exp Nephrol 1993;1:3–12. 1993.

    Google Scholar 

  80. Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harboring the mouse Ren-2 gene. Nature 1990;344:541–544.

    Google Scholar 

  81. Tokita Y, Franco-Saenz R, Reimann EM, Mulrow PJ. Hypertension in the transgenic rat TGR (mRen-2) 27 may be due to enhanced kinetics of the reaction between mouse renin and rat angiotensinogen. Hypertension 1994;23:422–427.

    Google Scholar 

  82. Kimura S, Mullins JJ, Bunnemann B, Metzger R, Hilgenfeld U, Zimmermann F, Jacob H, Fuxe K, Ganten D, Kaling M. High blood pressure in transgenic mice carrying the rat angiotensinogen gene. EMBO J 1992;11:821–827.

    Google Scholar 

  83. Ohkubo H, Kawakami H, Kahehi Y, Takumi T, Arai H, Yokota Y, Iwai M, Tanabe Y, Masu M, Hata J, Iwao H, Okamoto H, Yokoyama M, Nomura T, Katsuki M, Nakanishi S. Generation of transgenic mice with elevated blood pressure by introduction of the rat renin and angiotensinogen genes. Proc Natl Acad Sci USA 1990;87:5153–5157.

    Google Scholar 

  84. Fukamizu A, Sugimura K, Takimoto E, Sugyama F, Seo MS, Takahashi S, Hatoe T, Yagami K-I, Murakami K. Chimeric renin-angiotensin system demonstrates sustained increase in blood pressure of transgenic mice carrying both human renin and human angiotensinogen J Biol Chem 1993;268: 11617–11621.

    Google Scholar 

  85. Kurihara Y, Kurihara H, Suzuki H, Komada T, Mamura K, Nagai R, Oda H, Kuwaki T, Cao W-H, Kamada N, Jishage K, Ouchi Y, Azuma S, Toyoda Y, Ishikawa T, Kumada M, Yazaki Y. Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1. Nature 1994;368:703–710.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swynghedauw, B. Transgenic models of myocardial dysfunction. Heart Failure Rev 1, 277–290 (1997). https://doi.org/10.1007/BF00127409

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00127409

Keywords

Navigation