Skip to main content
Log in

Mdg-1 mobile element polymorphism in selected Drosophila melanogaster populations

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The changes in mdg-1 mobile element polymorphism that followed artificial selection for either high or low egg-to-adult viability in a Drosophila melanogaster population were investigated. The two selected subpopulations were thus characterized for fecundity, wing length, and number and location of the mdg-1 mobile element by in situ hybridization of the biotinylated-DNA on salivary gland chromosomes. The selected populations that differed greatly in egg-to-adult viability showed the same mean fecundity and identical values for intra and inter components of variances, intraclass correlation coefficient, and fluctuating asymmetry estimated on the wing length measurement. This indicates a non-correlated effect between deleterious mutations affecting viability and other fitness components. However, the two selected populations differed in their pattern of mdg-1 location, although the mean number of insertions per genome was not different from that of the initial population hence, the number of insertions of the mdg-1 mobile element was independent of the effective population size. These results suggest that the mdg-1 copy number was regulated, and that during the selection process, drift and inbreeding made up new insertion patterns of the mdg-1 element in the selected populations. The results are discussed in the light of some recent theoretical models of the population dynamics of transposable elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, W. W., 1969. Genetics of natural populations. XLI. The selection coefficients of heterozygotes for lethal chromosomes in Drosophila on different genetic background. Genetics 62: 827–836.

    Google Scholar 

  • Belyaeva, E. Sp., Ananiev, E. V. & Gvozdev, V. A., 1984. Distribution of mobile dispersed genes (mdg-1 and mdg-3) in the chromosomes of Drosophila melanogaster. Chromosoma 90: 16–19.

    Google Scholar 

  • Belyaeva, E. Sp., Pasyukova, E. G., Gvozdev, V. A., Ilyin, Y. O. H. & Kaidanov, L. Z., 1982. Transpositions of mobile dispersed genes in Drosophila melanogaster and fitness of stocks. Mol. gen. Genet. 185: 324–328.

    Google Scholar 

  • Benzécri, J. P., 1976. L'analyse des données II. L'analyse des correspondances. Ed. Dunot. Paris.

    Google Scholar 

  • Biel, S. W. & Hartl, D. L., 1983. Evolution of transposons: natural selection for Tn5 in Escherichia coli K12. Genetics 103: 581–592.

    Google Scholar 

  • Biémont, C., 1983. Homeostasis, enzymatic heterozygosity and inbreeding depression in natural populations of Drosophila melanogaster. Genetica 61: 179–189.

    Google Scholar 

  • Biémont, C., Belyaeva, E. Sp., Pasyukova, E. F. & Kogan, C., 1985. Mobile gene localisation and viability in a natural population of Drosophila melanogaster. Experientia 41: 1474–1476.

    Google Scholar 

  • Brookfield, J. F. Y., 1982. Interspersed repetitive DNA sequences are unlikely to be parasitic. J. theor. Biol. 94: 281–299.

    Google Scholar 

  • Chao, L., Vargas, C., Spear, B. B. & Cox, E. C., 1983. Transposable elements as mutator genes in evolution. Nature 303: 633–635.

    Google Scholar 

  • Charlesworth, B. & Charlesworth, D., 1983. The population dynamics of transposable elements. Genet. Res. 42: 1–27.

    Google Scholar 

  • Charlesworth, D. & Langley, C. H., 1986. The evolution of selfregulated transposition of transposable elements. Genetics 112: 359–383.

    Google Scholar 

  • Doolittle, W. F. & Sapienza, C., 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 272: 123–124.

    Google Scholar 

  • Falconer, D. S., 1981. Introduction to quantitative genetics. Longman, New York.

    Google Scholar 

  • Fitzpatrick, B. J. & Sved, J. A., 1986. High levels of fitness modifiers induced by hybrid dysgenesis in Drosophila melanogaster. Genet. Res. 48: 89–94.

    Google Scholar 

  • Georgiev, G. P., 1984. Mobile genetic elements in animal cells and their biological significance. Eur. J. Biochem. 145: 203–220.

    Google Scholar 

  • Gvozdev, V. A., Belyaeva, E. Sp., Ilyin, Y. U., Amosova, I. S. & Kaidanov, L. Z., 1981. Selection and transposition of mobile dispersed genes in Drosophila melanogaster. Cold Spring Harbor Symp. quant. Biol. 45: 673–685.

    Google Scholar 

  • Kaidanov, L. Z., 1980. The analysis of genetic consequences of selection and inbreeding in Drosophila melanogaster. Genetica 52/53: 165–181.

    Google Scholar 

  • Kleckner, N., 1981. Transposable elements in prokaryotes. Ann. Rev. Genet. 15: 341–404.

    Google Scholar 

  • Langley, C. H., Brookfield, J. F. Y. & Kaplan, N., 1983. Transposable elements in mendelian populations. I. A theory. Genetics 104: 457–471.

    Google Scholar 

  • Lewontin, R. C., 1974. The genetical basis of evolutionary changes. Columbia University Press. New York, London.

    Google Scholar 

  • Mackay, T. F. C., 1985. A quantitative genetic analysis of fitness and its components in Drosophila melanogaster. Genet. Res. 47: 59–70.

    Google Scholar 

  • Mackay, T. F. C., 1986. Transposable element-induced fitness mutations in Drosophila melanogaster. Genet. Res. 48: 77–87.

    Google Scholar 

  • Mukai, T., 1977. Lack of experimental evidence supporting selection for the maintenance of isozyme polymorphism in Drosophila melanogaster. Proc. Taniguchi int. Symp. Biophys. 2: 103–126.

    Google Scholar 

  • Orgel, L. E. & Crick, F. H. C., 1980. Selfish DNA: the ultimate parasite. Nature 284: 606–607.

    Google Scholar 

  • Pyle, D. W., 1976. Effects of artificial selection on reproductive fitness in Drosophila melanogaster. Nature 263: 317–319.

    Google Scholar 

  • Rose, M. R., 1984. Artificial selection on a fitness-component in Drosophila melanogaster. Evolution 38: 516–526.

    Google Scholar 

  • Scheffe, H., 1956. The analysis of variance, Wiley, New York.

    Google Scholar 

  • Simmons, M. J., Preston, C. R. & Engels, W. R., 1980. Pleiotropic effects on fitness of mutations affecting viability in Drosophila melanogaster. Genetics 94: 467–475.

    Google Scholar 

  • Sved, J. A., 1971. An estimate of heterosis in Drosophila melanogaster. Genet. Res. 18: 97–105.

    Google Scholar 

  • ThompsonJr., J. N. & Woodruff, R. C., 1981. A model for spontaneous mutations in Drosophila melanogaster caused by transposing elements. Heredity 47: 327–335.

    Google Scholar 

  • Watanabe, T. K. & Ohnishi, S., 1975. Genes affecting productivity in natural populations of Drosophila melanogaster. Genetics 80: 807–819.

    Google Scholar 

  • Watanabe, T. K., Yamaguchi, O. & Mukai, T., 1976. The genetic variability of third chromosomes in a local population of Drosophila melanogaster. Genetics 82: 63–82.

    Google Scholar 

  • Yukuhiro, K., Harada, K. & Mukai, T., 1985. Viability mutations induced by the P elements in Drosophila melanogaster. Jap. J. Genet. 60: 531–537.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biémont, C., Terzian, C. Mdg-1 mobile element polymorphism in selected Drosophila melanogaster populations. Genetica 76, 7–14 (1988). https://doi.org/10.1007/BF00126005

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00126005

Keywords

Navigation