Skip to main content
Log in

Antisense suppression of skeletal muscle myosin light chain-1 biosynthesis impairs myofibrillogenesis in cultured myotubes

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Although the alkali or essential light chains of skeletal muscle myosin are not required for actin-activated myosin ATPase activity, these myosin subunits are necessary for force transmission with in vitro actin motility assays and are believed to stabilize the α-helical neck region of myosin subfragment-1. To probe the functions of the essential light chains during myofibril assembly, we used recombinant DNA procedures to deplete this light chain in cultured muscle. Retroviral expression vectors were constructed which encoded the exon-1 sequence of the myosin light chain-1 gene in antisense orientation. These vectors were applied to myogenic cells from embryonic chick and quail pectoralis muscle. Colonies expressing antisense RNA were selected in growth medium containing the neomycin analogue G-418, plus 5-bromo-2′-deoxyuridine (BrdU) and triggered to differentiate by removal of the latter. Expression of antisense myosin light chain-1 mRNA impaired muscle development. In the antisense cultures there were more mononucleated cells, fewer and smaller myotubes which had poorly developed myofibrils and high levels of diffusely staining myosin heavy chain, not apparent in control myotubes. Protein synthesis in the myotube cultures was analyzed by 35S-methionine labelling and two-dimensional gel electrophoresis. Except for a suppression of ∼80% of myosin light chain-1f synthesis, the overall pattern of protein synthesis was not altered significantly. These studies suggest that retardation of myosin light chain-1f accumulation inhibits or delays myofibrillogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BADER, D., MASAKI, T. & FISCHMAN, D. A. (1982) Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J. Cell Biol. 95, 763–70.

    Google Scholar 

  • BILLETER, R., QUITSCHKE, W. & PATERSON, B. M. (1988) Approximately 1 kilobase of sequence 5′ to the two myosin light-chain 1f/3f gene cap sites is sufficient for differentiation-dependent expression. Mol. Cell Biol. 8, 1361–5.

    Google Scholar 

  • BISCHOFF, R. & HOLTZER, H. (1970) Inhibition of myoblast fusion after one round of DNA synthesis in 5-bromodeoxyuridine. J. Cell Biol. 44, 134–50.

    Google Scholar 

  • BOUCHÉ, M., GOLDFINE, S. M. & FISCHMAN, D. A. (1988) Posttranslational incorporation of contractile proteins into myofibrils in a cell-free system. J. Cell Biol. 107, 587–96.

    Google Scholar 

  • BRADFORD, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–54.

    Google Scholar 

  • COLEMAN, J. R. & COLEMAN, A. W. (1966) Reverse inhibition of clonal myogenesis by 5-bromodeoxyuridine. J. Cell Biol. 31, 22A.

    Google Scholar 

  • CROW, M. T., OLSON, P. S. & STOCKDALE, F. E. (1983) Myosin light-chain expression during avian muscle development. J. Cell Biol. 96, 736–44.

    Google Scholar 

  • DEVLIN, R. B. & EMERSON, C. P. (1978) Coordinate regulation of contractile protein synthesis during myoblast differentiation. Cell 13, 599–611.

    Google Scholar 

  • DOUGHERTY, J. P. & TEMIN, H. M. (1986) High mutation rate of a spleen necrosis virus-based retrovirus vector. Mol. Cell Biol. 6, 4387–95.

    Google Scholar 

  • DOUGHERTY, J. P., WISNIEWSKI, R., YANG, S. L., RHODE, B. W. & TEMIN, H. M. (1989) New retrovirus helper cells with almost no nucleotide sequence homology to retrovirus vectors. J. Virol. 63, 3209–12.

    Google Scholar 

  • EMERMAN, M. & TEMIN, H. M. (1986) Comparison of promoter suppression in avian and murine retrovirus vectors. Nucleic Acids Res. 14, 9381–96.

    Google Scholar 

  • FISCHMAN, D. A. & DANTO, S. I. (1985) Monoclonal antibodies to desmin: evidence for stage-dependent intermediate filament immunoreactivity during cardiac and skeletal muscle development. Ann. NY Acad. Sci. 455, 167–84.

    Google Scholar 

  • GAETJENS, E., BARANY, K., BAILIN, G., OPPENHEIMER, H. & BARANY, M. (1968) Studies on the low molecular weight protein components in rabbit skeletal myosin. Arch. Biochem. Biophys. 123, 82–96.

    Google Scholar 

  • GAUTHIER, G. F., LOWEY, S. & HOBBS, A. W. (1978) Fast and slow myosin in developing muscle fibres. Nature 274, 25–9.

    Google Scholar 

  • GERSHMAN, L. C., STRACHER, A. & DREIZEN, P. (1969) Subunit structure of myosin. 3. A proposed model for rabbit skeletal myosin. J. Biol. Chem. 244, 2726–36.

    Google Scholar 

  • IZANT, J. G. & WEINTRAUB, H. (1984) Inhibition of thymidine kinase gene expression by anti-sense RNA: a molecular approach to genetic analysis. Cell 36, 1007–15.

    Google Scholar 

  • IZANT, J. G. & WEINTRAUB, H. (1985) Constitutive and conditional suppression of exogenous and endogenous genes by anti-sense RNA. Science 229, 345–52.

    Google Scholar 

  • KELLER, L. R. & EMERSON, C. P. (1980) Synthesis of adult myosin light chain by embryonic muscle cultures. Proc. Natl. Acad. Sci. USA 77, 1020–4.

    Google Scholar 

  • KIM, S. K. & WOLD, B. J. (1985) Stable reduction of thymidine kinase activity in cells expressing high levels of anti-sense RNA. Cell 42, 129–38.

    Google Scholar 

  • KOMINZ, D. R., CARROL, W. R., SMITH, E. N. & MITCHELL, E. R. (1959) A subunit of myosin. Arch. Biochem. Biophys. 79, 191–9.

    Google Scholar 

  • KONIGSBERG, I. R. (1963) Clonal analysis of myogenesis. Science 140, 1273–84.

    Google Scholar 

  • KONIGSBERG, I. R. (1971) Diffusion-mediated control of myoblast fusion. Dev. Biol. 26, 133–52.

    Google Scholar 

  • LAEMMLI, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriphage T4. Nature 227, 680–5.

    Google Scholar 

  • LASSAR, A. B., PATERSON, B. M. & WEINTRAUB, H. (1986) Transfection of a DNA locus that mediates the conversion of 10T1/2 fibroblasts to myoblasts. Cell 47, 649–56.

    Google Scholar 

  • LOCKER, R. H. & HAGYARD, C. J. (1967) A correlation of various small sub-units of myosin. Arch. Biochem. Biophys. 120, 241–4.

    Google Scholar 

  • LOWEY, S. & RISBY, D. (1971) Light chains from fast and slow muscle myosins. Nature 234, 81–5.

    Google Scholar 

  • LOWEY, S., WALLER, G. S. & TRYBUS, K. M. (1993a) Skeletal muscle myosin light chains are essential for physiological speeds of shortening. Nature 365, 454–6.

    Google Scholar 

  • LOWEY, S., WALLER, G. S. & TRYBUS, K. M. (1993b) Function of skeletal muscle myosin heavy and light chain isoforms by an in vitro motility assay. J. Biol. Chem. 268, 20414–18.

    Google Scholar 

  • MASAKI, T. & YOSHIZAKI, C. J. (1974) Differentiation of myosin in chick embryos. J. Biochem. 76, 123–31.

    Google Scholar 

  • MATSUDA, R., BANDMAN, E. & STROHMAN, R. C. (1983) Regional differences in the expression of myosin light chains and tropomyosin subunits during development of chicken breast muscle. Dev. Biol. 95, 484–91.

    Google Scholar 

  • MCGARRY, T. J. & LINDQUIST, S. (1986) Inhibition of heat shock protein synthesis by heat-inducible antisense RNA. Proc. Natl. Acad. Sci. USA 83, 399–403.

    Google Scholar 

  • MELTON, D. A. (1985) Injected anti-sense RNAs specifically block messenger RNA translation in vivo. Proc. Natl Acad. Sci. USA 82, 144–8.

    Google Scholar 

  • MELTON, D. A. ed. (1988) Antisense RNA and DNA. New York: Cold Spring Harbor Press.

    Google Scholar 

  • MIKAWA, T., TAKEDA, S., SHIMIZU, T. & KITAURA, T. (1981) Gene expression of myofibrillar proteins in single muscle fibers of adult chicken: micro two dimensional gel electrophoretic analysis. J. Biochem. 89, 1951–62.

    Google Scholar 

  • MIKAWA, T., FISCHMAN, D. A., DOUGHERTY, J. P. & BROWN, A. M. (1991) In vivo analysis of a new lacZ retrovirus vector suitable for cell lineage marking in avian and other species. Exp. Cell. Res. 195, 516–23.

    Google Scholar 

  • MIKAWA, T., BORISOV, A., BROWN, A. M. & FISCHMAN, D. A. (1992a) Clonal analysis or cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: I. Formation of the ventricular myocardium. Dev. Dyn. 193, 11–23.

    Google Scholar 

  • MIKAWA, T., COHEN-GOULD, L. & FISCHMAN, D. A. (1992b) Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus. III: polyclonal origin of adjacent ventricular myocytes. Dev. Dyn. 195, 133–41.

    Google Scholar 

  • MIKAWA, T. & FISCHMAN, D. A. (1992) Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels. Proc. Natl. Acad. Sci. USA 89, 9504–8.

    Google Scholar 

  • NABESHIMA, Y., FUJII-KURIYAMA, Y., MURAMATSU, M. & OGATA, K. (1982) Molecular cloning and nucleotide sequences of the complementary DNAs to chicken skeletal muscle myosin two alkali light chain mRNAs. Nucleic Acids Res. 10, 6099–110.

    Google Scholar 

  • NABESHIMA, Y., FUJII, K. Y., MURAMATSU, M. & OGATA, K. (1984) Alternative transcription and two modes of splicing results in two myosin light chains from one gene. Nature 308, 333–8.

    Google Scholar 

  • OBINATA, T., MASAKI, T. & TAKANO, H. (1980) Types of myosin light chains present during the development of fast skeletal muscle in chick embryo. J. Biochem. 87, 81–8.

    Google Scholar 

  • O'FARRELL, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–21.

    Google Scholar 

  • O'NEILL, M. C. & STOCKDALE, F. E. (1974) 5-Bromodeoxyuridine inhibition of differentiation. Kinetics of inhibition and reversal in myoblasts. Dev. Biol. 37, 117–32.

    Google Scholar 

  • OPPENHEIMER, H., BARANY, K., HAMOIR, G. & FENTON, J. (1966) Polydispersity of succinylated myosin. Arch. Biochem. Biophys. 115, 233–4.

    Google Scholar 

  • OWENS, G. C. & BUNGE, R. P. (1991) Schwann cells infected with a recombinant retrovirus expressing myelin-associated glycoprotein antisense RNA do not form myelin. Neuron 7, 565–75.

    Google Scholar 

  • RAYMENT, I., RYPNEIWSKI, W. R., SCHMIDT-BÄSE, K., SMITH, R., TOMCHECK, D. R., BENNING, M. M., WINKELMANN, D. A., WESENBERG, G. & HOLDEN, H. M. (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50–8.

    Google Scholar 

  • ROBERT, B., WEYDERT, A., CARAVATTI, M., MINTY, A., COHEN, A., DAUBAS, P., GROS, F. & BUCKINGHAM, M. E. (1982) cDNA recombinant plasmid complementary to mRNAs for light chains 1 and 3 of mouse skeletal muscle myosin. Proc. Natl. Acad. Sci. USA 79, 2437–41.

    Google Scholar 

  • SAMBROOK, J., FRITSCH, E. F. & MANIATIS, T. (1989) Molecular Cloning: A Laboratory Manual. 2nd edition. New York: Cold Spring Harbor Press.

    Google Scholar 

  • SIVARAMAKRISHNAN, M. & BURKE, M. (1982) The free heavy chain of vertebrate skeletal myosin subfragment 1 shows full enzymatic activity. J. Biol. Chem. 257, 1102–5.

    Google Scholar 

  • STOCKDALE, F. E., RAMAN, N. & BADEN, H. (1981) Myosin light chains and the developmental origin of fast muscle. Proc. Natl. Acad. Sci. USA 78, 931–5.

    Google Scholar 

  • SZENT-GYORGYI, A. G. & CHANTLER, P. D. (1986) In Myology I (edited by ENGEL, A. G.) pp. 589–612. London, New York: McGraw-Hill.

    Google Scholar 

  • TAKAYAMA, K. M. & INOUYE, M. (1990) Antisense RNA. Crit. Rev. Biochem. Mol. Biol. 25, 155–84.

    Google Scholar 

  • TSAO, T. C. (1953) Fragmentation of the myosin molecule. Biochim. Biophys. Acta 11, 368–82.

    Google Scholar 

  • WAGNER, P. D. & GINIGER, E. (1981) Hydrolysis of ATP and reversible binding of F-actin by myosin heavy chains free of all light chains. Nature 292, 560–2.

    Google Scholar 

  • WEEDS, A. G. & LOWEY, S. (1971) Substructure o myosin molecule. II. The light chains of myosin. J. Mol. Biol. 61, 701–25.

    Google Scholar 

  • ZIMMERMANN, K., KAUTZ, S., HAJDU, G., WINTER, C., WHALEN, R. G. & STARZINSKI-POWITZ, A. (1990) Heterogenic mRNAs with an identical protein-coding region of the human embryonic myosin alkali light chain in skeletal muscle cells. J. Mol. Biol. 211, 505–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nawrotzki, R., Fischman, D.A. & Mikawa, T. Antisense suppression of skeletal muscle myosin light chain-1 biosynthesis impairs myofibrillogenesis in cultured myotubes. J Muscle Res Cell Motil 16, 45–56 (1995). https://doi.org/10.1007/BF00125309

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00125309

Keywords

Navigation