Skip to main content
Log in

Computational parameter estimation for a maize crop

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

During a whole growing season, the evolution of the displacement height, d, and roughness length, z 0, of a maize crop has been estimated by a measurement programme. The results have been used to check different types of existing models to calculate these parameters from canopy characteristics only; a simple geometric model and two matching models have been investigated. A geometric model is based on geometric features of the surface only. After a simple modification, the geometric model gives good results for the displacement height as well as for the roughness length.

A matching model, based on gradient-diffusion theory, yields good results for the displacement height. The roughness parameter, however, is overestimated by 17%. By a simple modification, the model results could be improved considerably.

A matching model, based on a second-order closure procedure, yields excellent results for the displacement height and good results for the roughness length. But it appears that, when applying this model, the plant density index and plant area density distribution as a function of height must be well known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Businger, J. A.: 1977, ‘Aerodynamics of Vegetated Surfaces’, Heat and Mass Transfer in the Biosphere, Scripta Book Co., 594 pp.

  • Cionco, R. M.: 1965, ‘A Mathematical Model for Air Flow in a Vegetated Canopy’, J. Appl. Meteorol. 4, 517–522.

    Google Scholar 

  • De Bruin, H. A. R. and Moore, C. J.: 1985, ‘Zero Plane Displacement and Roughness Length for Tall Vegetation, Derived from a Simple Mass Conservation Hypothesis’, Boundary-Layer Meteorol. 31, 39–49.

    Google Scholar 

  • Den Hartog G. and Shaw R. M.: 1975, ‘A Field Study of Atmospheric Processes within a Vegetative Canopy’, Heat and Mass Transfer in the Biosphere, Scripta Book Co., 594 pp.

  • Goudriaan, J.: 1977, Crop Micrometeorology: Simulation Study, Pudoc, Wageningen, The Netherlands, 249 pp.

  • Högström, U.: 1985, ‘Von Kármán's Constant in Atmospheric Boundary Layer Flow: Reevaluated’, J. Atm. Sci. 42, 263–270.

    Google Scholar 

  • Inoue, E.: 1963, ‘On the Turbulent Structure of Airflow within Crop Canopies’, J. Meteorol. Soc. Japan 41, 317–325.

    Google Scholar 

  • Inoue, K.: 1981, ‘A Model Study of Microstructure of Wind Turbulence of Plant Canopy Flow’, Bull. National Inst. Agric. Sci. Japan, Ser. A 27, 69–89.

    Google Scholar 

  • Jacobs, A. F. G. and Schols, E.: 1986, ‘Surface Roughness Parameter estimated with a Drag Technique’, J. Climate Appl. Meteorol. 25, 1577–1582.

    Google Scholar 

  • Jacobs, A. F. G. and Van Boxel, J. H.: 1987, ‘Changes of the Displacement Height and Roughness Length of Maize during a Growing Season’, Agric. Forest Meteorol. (in press).

  • Koloseus, H. J. and Davidian, J.: 1966, ‘Free-Surface Instability Correlations, and Roughness-Concentration Effects on Flow over Hydronamically-Rough Surfaces’, USGS Water Supply, Paper 1592-C.D.

  • Kondo, S. and Akashi, J.: 1976, ‘Numerical Studies on the Two-Dimensional Flow in Horizontally Homogeneous Canopy Layer’, Boundary-Layer Meteorol. 10, 255–272.

    Google Scholar 

  • Kutzbach, J. E.: 1961, Investigations of the Modification of Wind Profiles by Artificially Controlled Surface Roughness, Ann. Rep. Dep. Meteorol., Univ. of Wisconsin, Madison, W.I. Ann. Rep. No. DA-36-039-SC-80282, pp. 71–113.

  • Legg, B. J. and Long, I. F.: 1975, ‘Turbulent Diffusion within a Wheat Canopy: II. Results and Interpretation’, Quart. J. Roy. Meteorol. Soc. 101, 611–628.

    Google Scholar 

  • Lettau, H.: 1969, ‘Note on Aerodynamic Roughness-Parameter Estimation on the Basis of Roughness Element Description’, J. Appl. Meteorol. 8, 828–832.

    Google Scholar 

  • Marshall, J. K.: 1971, ‘Drag Measurements in Roughness Arrays of Varying Density and Distribution’, Agric. Meteorol. 8, 269–292.

    Google Scholar 

  • Marunich, S. V.: 1971, ‘Kharakteristiki turbulentnosti v usboviyakh lesa po gradientnym i strukturnym wablyudeniyam’, Trudy G.G.I. 198, 154–165.

    Google Scholar 

  • Monin, A. S. and Yaglom, A. M.: 1973, Statistical Fluid Mechanics, M.I.T. Press, Cambridge, Mass., 769 pp.

    Google Scholar 

  • Monteith, J. L.: 1976, Vegetation and the Atmosphere, Vol. 2, Academic Press, New York, N.Y., 439 pp.

    Google Scholar 

  • Raupach, M. R. and Thom, A. S.: 1981, ‘Turbulence in and above Plant Canopies’, Ann. Rev. Fluid Mech. 13, 97–129.

    Google Scholar 

  • Seginer, I.: 1974, ‘Aerodynamic Roughness of Vegetated Surfaces’, Boundary-Layer Meteorol. 5, 383–393.

    Google Scholar 

  • Shaw, R. H., Den Hartog, G., King, K. M., and Thurtell, G. W.: 1974a, ‘Measurements of Mean Wind Flow and Three-Dimensional Turbulence Intensity within a Mature Corn Canopy’, Agric. Meteorol. 13, 419–425.

    Google Scholar 

  • Shaw, R. H., Silverside, R. H., and Thurtell, G. W.: 1974b, ‘Some Observations of Turbulence and Turbulent Transport within and above Plant Canopies’, Boundary-Layer Meteorol. 5, 429–449.

    Google Scholar 

  • Shaw, R. H. and Pereira, A. R.: 1982, ‘Aerodynamic Roughness of a Plant Canopy: A Numerical Experiment’, Agric. Meteorol. 26, 61–65.

    Google Scholar 

  • Tajchman, S. J.: 1981, ‘Comments on Measuring Turbulent Exchange within and above Forest Canopy’, Bull. Am. Meteorol. Soc. 62, No. 11, 1550–1559.

    Google Scholar 

  • Tennekes, H.: 1982, ‘Similarity Relations, Scaling Laws and Spectral Dynamics’, F. T. M. Nieuwstad and H. van Dop (eds.), Atmospheric Turbulence and Air Pollution Modeling, D. Reidel Publ. Co., Dordrecht, Holland, pp. 37–68.

    Google Scholar 

  • Thom, A. S.: 1971, ‘Momentum Absorption by Vegetation’, Quart. J.R. Meteorol. Soc. 97, 414–428.

    Google Scholar 

  • Wieringa, J.: 1980, ‘A Re-Evaluation of the Kansas Mast Influences on Measurements of Stress and Cup-Anemometers Overspeeding’, Boundary-Layer Meteorol. 18, 411–430.

    Google Scholar 

  • Wilson, J. R. and Shaw, R. H.: 1977, ‘A Higher-Order Closure Model for Canopy Flow’, J. Appl. Meteorol. 16, 1197–1205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, A.F.G., Van Boxel, J.H. Computational parameter estimation for a maize crop. Boundary-Layer Meteorol 42, 265–279 (1988). https://doi.org/10.1007/BF00123816

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00123816

Keywords

Navigation