Skip to main content
Log in

Application of the E-ε turbulence model to the atmospheric boundary layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

In the so called E - ε turbulence model, an eddy viscosity is evaluated from turbulent kinetic energy E and energy dissipation ε. Although still a first-order closure method in its simpler form, the E- ε model yields eddy viscosity for complex turbulent flows without a prior prescription of a length scale needed in so-called mixing-length models. The E - ε model has been successfully applied to many flow problems in engineering applications for non-rotating boundary layers. In this paper, the E - ε method is extended to the atmospheric boundary layer for which a modification of the dissipation equation is found to be necessary in order to give results comparable with observational data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aupoix, B., Cousteix, J., and Liandrat, J.: 1983, ‘Effects of Rotation on Isotropic Turbulence’, Proceedings of Fouth Conference on Turbulent Shear Flows, 1983, Karlsruhe, F.R.G.

  • Blackadar, A. K.: 1962, ‘The Vertical Distribution of Wind and Turbulence Exchange in an Neutral Atmosphere’, J. Geophys. Res. 67, 3095–3102.

    Google Scholar 

  • Blackadar, A. K. and Tennekes, H.: 1968, ‘Asymptotic Similarity in Neutral Barotropic Planetary Boundary Layers’, J. Atmos. Sci. 25, 1015–1020.

    Google Scholar 

  • Bodin, S.: 1980, ‘Applied Numerical Modeling of the Atmospheric Boundary Layer’ in Longhetto, A.: Atmospheric Planetary Boundary Layer Physics, Elsevier Scientific Publ. Co., Amsterdam, pp. 1–76.

    Google Scholar 

  • Brown, R. A.: 1970, ‘A Secondary Flow Model of the Planetary Boundary Layer’, J. Atmos. Sci. 27, 742–757.

    Google Scholar 

  • Busch, N. E.: 1973, ‘On the Mechanics of Atmospheric Turbulence’, in Haugen, D. A. (ed.), Workshop on Micrometeorology, Amer. Meteorol. Soc., Boston, pp. 1–65.

    Google Scholar 

  • Deaves, D. M.: 1984, ‘Application of Advanced Turbulence Models in Determining the Structure and Dispersion of Heavy Gas Clouds’, in Ooms, G. and H. Tennekes (eds.), Atmospheric Dispersion of Heavy Gases and Small Particles, Springer-Verlag, Berlin, pp. 93–103.

    Google Scholar 

  • Durst, F., Launder, B. E., Schmidt, F. W., and Whitelaw, J. H.: 1979, Turbulent Shear Flows I, Springer-Verlag, Berlin, 415 pp.

    Google Scholar 

  • Gibson, M. M. and Launder, B. E.: 1976, ‘On the Calculation of Horizontal, Turbulent Free Shear Flow under Gravitational Influence’, J. Heat Transfer, Trans. ASME 98C, 81–87.

    Google Scholar 

  • Hanjalic, K. and Launder, B. E.: 1972, ‘A Reynolds Stress Model of Turbulence and its Application to Thin Shear Flows’, J. Fluid Mech. 52, 609–638.

    Google Scholar 

  • Hasse, L.: 1978, ‘Parameterization of the Dissipation Term in Second Order Closure Modeling of the Planetary Boundary Layer Under Conditions of Forced Convection’, Beitr. Phys. Am. 51, 166–173.

    Google Scholar 

  • Hunt, J. C. R.: 1980, Wind over Hills, Workshop on the Planetary Boundary Layer, Amer. Meteorol. Soc., Boston, pp. 107–157.

    Google Scholar 

  • Launder, B. E. and Spalding, D. B.: 1972, Mathematical Models of Turbulence, Academic Press, London, 169 pp.

    Google Scholar 

  • Launder, B. E. and Spalding, D. B.: 1974, ‘The Numerical Computations of Turbulent Flows’, Comp. Meth. in Appl. Mech. and Eng. 3, 269–289.

    Google Scholar 

  • Launder, B. E., Reece, G. J., and Rodi, W.: 1975, ‘Progress in the Development of a Reynolds-Stress Turbulence Closure’, J. Fluid Mech. 68, 537–566.

    Google Scholar 

  • Lee, H. N.: 1979, Atmospheric Turbulence and Diffusion Boundary Layer Transport Model, Proceedings Fourth Symposium on Turbulence, Diffusion and Air Pollution, Jan. 1979, Reno, Nevada, Amer. Meteorol. Soc., Boston.

    Google Scholar 

  • Lee, N. H. and Kao, S. U.: 1979, ‘Finite-Element Numerical Modeling of Atmospheric Turbulent Boundary Layer’, J. Appl. Meteorol. 18, 1287–1295.

    Google Scholar 

  • Lettau, H. H.: 1962, ‘Theoretical Wind Spirals in the Boundary Layer of a Barotropic Atmosphere’, Beitr. Phys. Atm. 35, 195–212.

    Google Scholar 

  • Lewellen, W. S.: 1977, ‘Use of Invariant Modeling’ in Frost, W. and T. H. Moulden (eds.), Handbook of Turbulence, Plenum Press, New York, 237–280.

    Google Scholar 

  • Lewellen, W. S. and Teske, M. E.: 1973, ‘Prediction of the Monin-Obukhov Similarity Functions from an Invariant Model of Turbulence’, J. Atmos. Sci. 30, 1340–1345.

    Google Scholar 

  • Lewellen, W. S., Teske, M. E., and Sheng, Y. P.: 1980, ‘Micrometeorological Applications of a Second-Order Closure Model of Turbulent Transport’, in Bradbury, L. J. S., F. Durst, B. E. Launder, F. W. Schmidt, and J. H. Whitelaw (eds.), Turbulent Shear Flows 2, Springer-Verlag, Berlin, pp. 366–378.

    Google Scholar 

  • Lumley, J. L.: 1980, ‘Second Order Modeling of Turbulent Flows’, in Kollmann, W. (ed.), Prediction Methods for Turbulent Flows, Hemisphere Publ. Co., London, pp. 1–31.

    Google Scholar 

  • Lumley, J. L. and Khajeh-Nouri, B.: 1974, ‘Computational Modeling of Turbulent Transport’, Adv. Geophys. 18A, 169–192.

    Google Scholar 

  • Marchuk, G. I., Kochergin, V. P., Klimok, V. I., and Sukhorukov, V. A.: 1977, ‘On the Dynamics of the Ocean Surface Mixed Layer’, J. Phys. Oceanogr. 7, 865–875.

    Google Scholar 

  • Mason, R. J. and Sykes, R. I.: 1980, ‘A Two-Dimensional Numerical Study of Horizontal Roll Vortices in the Neutral Atmospheric Boundary Layer’, Quart. J. R. Meteorol. Soc. 106, 351–366.

    Google Scholar 

  • Mellor, G. L. and Herring, H. J.: 1973, ‘A Survey of Mean Turbulent Field Closure Models’, AIAAJ. 11. 590–599.

    Google Scholar 

  • Mellor, G. L. and Yamada, T.: 1974, ‘A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers’, J. Atmos. Sci. 31, 1791–1806.

    Google Scholar 

  • Mellor, G. L. and Yamada, T.: 1982, ‘Development of a Turbulence Closure Model for Geophysical Fluid Problems’, Rev. Geophys. and Space Physics 20, 851–875.

    Google Scholar 

  • Orlanski, J.: 1975, ‘A Rational Subdivision of Scales for Atmospheric Processes’, Bull. Amer. Meteorol. Soc. 56, 527–530.

    Google Scholar 

  • Panofsky, H. A., Tennekes, H., Lenschow, D. H., and Wyngaard, J. C.: 1977, ‘The Characteristics of Turbulent Velocity Components in the Surface Layer Under Convective Conditions’, Boundary-Layer Meteorol. 11, 355–361.

    Google Scholar 

  • Pielke, R. A.: 1984, ‘Mesoscale Meteorological Modeling’, 612 pp., Academic Press, London.

    Google Scholar 

  • Rodi, W.: 1980, ‘Turbulence Models for Environmental Problems’, in Kollmann, W. (ed.), Prediction Methods for Turbulent Flows, Hemisphere Publ. Co., London, pp. 259–349.

    Google Scholar 

  • Rodi, W.: 1980, ‘Turbulence Models and their Application in Hydraulics’, IAHR State of the Art Paper, Delft, 104 pp.

  • Shir, C. C.: 1973, ‘A Preliminary Numerical Study of Atmospheric Turbulent Flows in the Idealized Planetary Boundary Layer’, J. Atmos. Sci. 30, 1327–1339.

    Google Scholar 

  • Svensson, U.: 1979, ‘The Structure of the Turbulent Ekman Layer’, Tellus 31, 340–350.

    Google Scholar 

  • Svensson, U.: 1980, ‘On the Numerical Prediction of Vertical Turbulent Exchange in Stratified Flows’, in Castens, T. and T. McClimans, Second IAHR Symposium on Stratified Flows, Vol. 2, pp. 686–696, Trondheim, Norway.

  • Tennekes, H.: 1973, ‘Similarity Laws and Scale Relations in Planetary Boundary Layers’, in Haugen, D. A. (ed.), Workshop on Micrometeorology, Amer. Meteorol. Soc., Boston, pp. 177–216.

    Google Scholar 

  • Tennekes, H. and Lumley, J. L.: 1972, A First Course in Turbulence, MIT Press, Cambridge, 293 pp.

    Google Scholar 

  • Therry, G. and LaCarrére, P.: 1983, ‘Improving the Eddy Kinetic Energy Model for Planetry Boundary Layer Description’, Boundary-Layer Meteorol. 25, 63–88.

    Google Scholar 

  • Wipperman, F.: 1972, ‘Empirical Formulare for the Universal Functions M m (Μ) and N(Μ) in the Resistance Law for a Barotropic and Diabatic Planetary Boundary Layer’, Beitr. Phys. Atm. 45, 305–311.

    Google Scholar 

  • Wyngaard, J. C.: 1982, ‘Boundary-Layer Modeling’ in Nieuwstadt, F. T. M. and H. van Dop, Atmospheric Turbulence and Air Pollution Modeling, D. Reidel Publ. Co., Dordrecht, pp. 69–106.

    Google Scholar 

  • Wyngaard, J. C., Coté, O. R., and Rao, K. S.: 1974, ‘Modeling the Atmospheric Boundary Layer’, Adv. Geophys. 18A, 193–212.

    Google Scholar 

  • Yamada, T.: 1978, ‘A Three-Dimensional, Second-Order Closure Numerical Model of Mesoscale Circulations in the Lower Atmosphere: Description of the Basic Model and an Application to the Simulation of the Environmental Effects of a Large Cooling Pond’, Argonne National Laboratory, Top. Rep. ANL (RER-78-1), 67 pp.

  • Yamada, T.: 1983, ‘Simulations of Nocturnal Drainage Flows by a q 2l Turbulence Closure Model’, J. Atm. Sci. 40, 91–106.

    Google Scholar 

  • Zeman, O. and Lumley, J. L.: 1979, ‘Buoyancy Effects in Entraining Turbulent Boundary Layers: A Second-Order Closure Study’, in Durst, F., B. E. Launder, F. W. Schmidt, and J. H. Whitelaw (eds.), Turbulent Shear Flows I, Springer-Verlag, Berlin, pp. 295–306.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Detering, H.W., Etling, D. Application of the E-ε turbulence model to the atmospheric boundary layer. Boundary-Layer Meteorol 33, 113–133 (1985). https://doi.org/10.1007/BF00123386

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00123386

Keywords

Navigation