Skip to main content
Log in

On the sensitivity of mesoscale models to surface-layer parameterization constants

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The Colorado State University standard mesoscale model is used to evaluate the sensitivity of one-dimensional (1D) and two-dimensional (2D) fields to differences in surface-layer parameterization “constants”. Such differences reflect the range in the published values of the von Karman constant, Monin-Obukhov stability functions and the temperature roughness length at the surface. The sensitivity of 1D boundary-layer structure, and 2D sea-breeze intensity, is generally less than that found in published comparisons related to turbulence closure schemes generally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arritt, R. W.: 1987, ‘The Effect of Water Surface Temperature on Lake Breezes and Thermal Internal Boundary Layers’, Boundary-Layer Meteorol. 40, 101–125.

    Google Scholar 

  • Brutsaert, W.: 1982, Evaporation into the Atmosphere, D. Reidel Publ. Co., Boston, U.S.A., 299 pp.

    Google Scholar 

  • Busch, N. E., Chang, S. W. and Anthes, R. A.: 1976, ‘A Multi-level Model of the Planetary Boundary Layer Suitable for Use with Mesoscale Dynamic Models’, J. Appl. Meteorol., 15, 909–919.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y. and Bradley, E. F.: 1971, ‘Flux-profile Relationship in the Atmospheric Surface Layer’, J. Amos. Sci., 28, 181–189.

    Google Scholar 

  • Businger, J. A.: 1988, ‘A Note on the Businger-Dyer Profiles’, Boundary-Layer Meteorol. 42, 145–151.

    Google Scholar 

  • Clarke, R. A.: 1974, ‘Attempts to Simulate the Diurnal Course of Meteorological Variables in the Boundary Layer’, Izv. Atmos. Oc. Phys. 10(6), 600–612.

    Google Scholar 

  • Deardorff, J. W.: 1974, ‘Three-Dimensional Numerical Study of the Height and Mean Structure of a Heated Planetary Boundary Layer’, Boundary-Layer Meteorol. 7, 81–106.

    Google Scholar 

  • Dyer, A. J.: 1974, ‘A Review of Flux-profile Relationships’, Boundary-Layer Meteorol. 7, 363–372.

    Google Scholar 

  • Dyer, A. J. and Hicks, B. B.: 1970, ‘Flux-gradient Relationships in the Constant Flux Layer’, Quart. J. Roy. Meteorol. Soc. 96, 715–721.

    Google Scholar 

  • Dyer, A. J. and Bradley, E. F.: 1982, ‘An Alternative Analysis of Flux-gradient Relationships at the 1976 ITCE’, Boundary-Layer Meteorol. 22, 3–19.

    Google Scholar 

  • Garratt, J. R.: 1977, ‘Review of Drag Coefficients over Oceans and Continents’, Mon. Wea. Rev. 105, 915–929.

    Google Scholar 

  • Garratt, J. R. and Hicks, B. B.: 1973, ‘Momentum, Heat and Water Vapour Transfer to and from Natural and Artificial Surfaces’, Quart. J. Roy. Meteorol. Soc. 99, 680–687.

    Google Scholar 

  • Garratt, J. R. and Francey, R. J.: 1978, ‘Bulk Characteristics of Heat Transfer in the Unstable, Baroclinic Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 15, 399–421.

    Google Scholar 

  • Gross, G.: 1985, ‘An Explanation of the “Maloja-Serpent” by Numerical Simulation’, Beitr. Phys. Atmosph. 58(4), 441–457.

    Google Scholar 

  • Hansen, J., Russell, G., Rind, D., Stone, P., Lacis, A., Lebedeff, S., Ruedy, R., and Travis, L.: 1983, ‘Efficient Three-Dimensional Global Models for Climate Studies: Models I and II’, Mon. Wea. Rev. 111, 609–662.

    Google Scholar 

  • Högström, U.: 1988, ‘Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer: A Re-evaluation’, Boundary-Layer Meteorol. 42, 55–78.

    Google Scholar 

  • Leslie, L. M., Mills, G. A., Logan, L. W., Gauntlett, D. J., Kelly, G. A., Manton, M. J., McGregor, J. L. and Sardie, J. M.: 1985, ‘A High Resolution Primitive Equations NWP Model for Operations and Research’, Aust. Meteorol. Mag. 33, 11–35.

    Google Scholar 

  • Louis, J. F.: 1979, ‘A Parametric Model of Vertical Eddy Fluxes in the Atmosphere’, Boundary-Layer Meteorol. 17, 187–202.

    Google Scholar 

  • Louis, J. F., Tiedtke, M., and Geleyn, J.-F.: 1981, ‘A Short History of the PBL Parameterization at ECMWF’, in Workshop on Planetary Boundary Layer Parameterization, ECMWF, Shinfield Park, Reading, Berks, U.K., 260 pp.

  • Mahfouf, J. F., Richard, E., Mascart, P., Nickerson, E. C., and Rosset, R.: 1987, ‘A Comparative Study of Various Parameterizations of the Planetary Boundary Layer in a Numerical Mesoscale Model’, J. Clim. Appl. Meteorol. 26, 1671–1695.

    Google Scholar 

  • Mahrer, Y. and Pielke, R. A.: 1977, ‘A Numerical Study of the Airflow over Irregular Terrain’, Beitr. Phys. Atmosph. 50, 98–113.

    Google Scholar 

  • Manins, P. C.: 1982, ‘The Daytime Planetary Boundary Layer: a New Interpretation of Wangara Data’, Quart. J. Roy. Meteorol. Soc. 108, 689–705.

    Google Scholar 

  • McNider, R. T. and Pielke, R. A.: 1981, ‘Diurnal Boundary-layer Development over Sloping Terrain’, J. Atmos. Sci. 38, 2198–2212.

    Google Scholar 

  • Mellor, G. L. and Yamada, T.: 1974, ‘A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers’, J. Atmos. Sci. 31, 1791–1806.

    Google Scholar 

  • Nickerson, E. C., Richard, E., Rosset, R., and Smith, D. R.: 1986, ‘The Numerical Simulation of Clouds, Rain and Airflow over the Vosges and Black Forest Mountains: a Meso-Β Model with Parameterized Microphysics’, Mon. Wea. Rev. 114, 398–414.

    Google Scholar 

  • O'Brien, J. J.: 1970, ‘A Note on the Vertical Structure of the Eddy Exchange Coefficient in the Planetary Boundary Layer’, J. Atmos. Sci. 27, 1213–1215.

    Google Scholar 

  • Webb, E. K.: 1970, ‘Profile Relationships: the Log-Linear Range and Extension to Strong Stability’, Quart. J. Roy. Meteorol. Soc. 96, 67–90.

    Google Scholar 

  • Webb, E. K.: 1982, ‘Profile Relationships in the Superadiabatic Surface Layer’, Quart. J. Roy. Meteorol. Soc. 108, 661–688.

    Google Scholar 

  • Wieringa, J.: 1980, ‘A Revaluation of the Kansas Mast Influence on Measurements of Stress and Cup Anemometer Overspeeding’, Boundary-Layer Meteorol. 18, 411–430.

    Google Scholar 

  • Yaglom, A. M.: 1977, ‘Comments on Wind and Temperature Flux-Profile Relationships’, Boundary-Layer Meteorol. 11, 89–102.

    Google Scholar 

  • Yu, T.-W.: 1977, ‘A Comparative Study on Parameterization of Vertical Turbulent Exchange Processes’, Mon. Wea. Rev. 105, 57–66.

    Google Scholar 

  • Zhang, D. and Anthes, R. A.: 1982, ‘A High-resolution Model of the Planetary Boundary Layer -Sensitivity Tests and Comparisons with SESAME-79 Data’, J. Appl. Meteorol. 21, 1594–1609.

    Google Scholar 

  • Zhang, S. F., Oncley, S. P. and Businger, J. A.: 1988, ‘A Critical Evaluation of the Von Karman Constant from a New Atmospheric Surface Layer Experiment’, Eighth Symposium on Turbulence and Diffusion, Amer. Meteor. Soc., San Diego, 148–150.

    Google Scholar 

  • Zilitinkevitch, S. S.: 1970, The Dynamics of the Atmospheric Boundary Layer, Hydrometeorological Publishing House, Leningrad (in Russian — English translation by C. Long), 289 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garratt, J.R., Pielke, R.A. On the sensitivity of mesoscale models to surface-layer parameterization constants. Boundary-Layer Meteorol 48, 377–387 (1989). https://doi.org/10.1007/BF00123060

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00123060

Keywords

Navigation