Skip to main content
Log in

A comparison of local and non-local turbulence closure methods for the case of a cold air outbreak

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Numerical experiments have shown that large-eddy-simulation models (LES) are able to reproduce the common features of convective boundary layers (CBL) quite well. Models which cannot resolve the convective motions due to their grid structure (1D-models or models with coarse horizontal and/or vertical resolution) have to take into account the effects of large eddies within their subgrid diffusion terms. Turbulent fluxes are frequently parameterized through first-order-closure methods (K-theory). Recently, non-local closure schemes have also been developed. In this paper we compare 1D-and 2D-models using different local and non-local first-order closure methods. The analysis is carried out for the case of an idealized cold air outbreak (CAO). One of the non-local closures is based on the so-called transilient turbulence theory. The reference states are given by a bulk-model and a 2D-model which resolves the large eddies explicitly. A comparison of the results is presented for characteristic quantities such as evolution of boundary-layer height and surface heat flux as well as mean wind and temperature profiles. It is found that simple local first-order closure does not give good agreement with the reference models. The results of the transilient turbulence model shows that a non-local closure is able to parameterize the effects of the large eddies. Comparable results are produced by a local closure where eddy diffusivities are parameterized by dimensionless gradient-functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blackadar, A. K.: 1962, ‘The Vertical Distribution of Wind and Turbulence Exchange in a Neutral Atmosphere’, J. Geophys. Res. 67 3095–3102.

    Google Scholar 

  • Brown, R. A.: 1980, ‘Longitudinal Instabilities and Secondary Flows in the Planetary Boundary Layer: A Review’, Rev. Geophys. Space Phys. 18 683–697.

    Google Scholar 

  • Caughey, S. J. and Palmer, S. G.: 1979, ‘Some Aspects of Turbulence Structure through the Depth of the Convective Layer’, Q.J.R. Meteorol. Soc. 105 811–827.

    Google Scholar 

  • Charnock, H.: 1955, ‘Wind Stress on a Water Surface’, Q.J.R. Meteorol. Soc. 81 639–640.

    Google Scholar 

  • Chou, S.-H. and Atlas, D.: 1982, ‘Satellite Estimates of Ocean-Air Heat Fluxes during Cold Air Outbreaks’, Mon. Wea. Rev. 110 1434–1450.

    Google Scholar 

  • Chou, S.-H., Atlas, D., and Yeh, E.-N.: 1986, ‘Turbulence in a Convective Marine Atmospheric Boundary Layer’, J. Atmos. Sci. 43 547–564.

    Google Scholar 

  • Chrobok, G.: 1988, Zur numerischen Simulation Konvektiver Grenzschichten mit integralen Schlieβungsansätzen, Diploma Thesis, Faculty of Physics, University Hannover, F.R.G.

    Google Scholar 

  • Deardorff, J. W.: 1966, ‘The Counter Gradient Heat Flux in the Lower Atmosphere and in the Laboratory’, J. Atmos. Sci. 23 503–506.

    Google Scholar 

  • Deardorff, J. W.: 1970, ‘Convection Velocity and Temperature Scales for the Unstable Planetary Boundary Layer and for Rayleigh Convection’, J. Atmos. Sci. 27 1211–1213.

    Google Scholar 

  • Deardorff, J. W.: 1972, ‘Numerical Investigation of Neutral and Unstable Planetary Boundary Layers’, J. Atmos. Sci. 29 91–115.

    Google Scholar 

  • Deardorff, J. W.: 1979, ‘Prediction of Convective Mixed-Layer Entrainment for Realistic Capping Inversion Structure’, J. Atmos. Sci. 36 424–436.

    Google Scholar 

  • Deardorff, J. W., Willis, G. and Lilly, D. K.: 1969, ‘Laboratory Investigation of Non-Steady Penetractive Convection’, J. Fluid Mech. 35 7–31.

    Google Scholar 

  • Driedonks, A. G. M.: 1982, ‘Models and Observations of the Growth of the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 23 283–306.

    Google Scholar 

  • Driedonks, A. G. M. and Tennekes, H.: 1984, ‘Entrainment Effects in the Well-Mixed Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 30 75–105.

    Google Scholar 

  • Ebert, E. E., Schumann, U. and Stull, R. B.: 1989, ‘Nonlocal Turbulent Mixing in the Convective Boundary Layer Evaluated from Large-Eddy Simulation’, J. Atmos. Sci. 46 2178–2207.

    Google Scholar 

  • Fiedler, B. H.: 1984, ‘An Integral Closure Model for the Vertical Turbulent Flux of a Scalar in a Mixed Layer’, J. Atmos. Sci. 41 674–680.

    Google Scholar 

  • Fiedler, B. H. and Moeng, C.-H.: 1985, ‘A Practical Integral Closure Model for Mean Vertical Transport of a Scalar in a Convective Boundary Layer’, J. Atmos. Sci. 42 359–363.

    Google Scholar 

  • Garratt, J. R.: 1977, ‘Review of Drag Coefficients over Oceans and Continents’, Mon. Wea. Rev. 105 915–929.

    Google Scholar 

  • Huang, C. Y. and Raman, S.: 1988, ‘A Numerical Study of the Marine Boundary Layer over the Gulfstream during Cold Air Advection’, Boundary-Layer Meteorol. 45 251–290.

    Google Scholar 

  • Lenschow, D. H.: 1974, ‘Model of the Height Variation of the Turbulence Kinetic Energy Budget in the Unstable Planetary Boundary Layer’, J. Atmos. Sci. 31 465–474.

    Google Scholar 

  • Moeng, C.-H.: 1984, ‘A Large-Eddy-Simulation Model for the Study of Planetary Boundary Layer Turbulence’, J. Atmos. Sci. 41 2052–2062.

    Google Scholar 

  • Moeng, C. H. and Wyngaard, J. C.: 1984, ‘Statistics of Conservative Scalars in the Convective Boundary Layer’, J. Atmos. Sci. 41 3161–3169.

    Google Scholar 

  • Moeng, C. H. and Wyngaard, J. C.: 1989, ‘Evaluation of Turbulent Transport and Dissipation Closures in Second-Order Modeling’, J. Atmos. Sci. 46 2311–2330.

    Google Scholar 

  • Raasch, S.: 1988, Numerische Simulation zur Entwicklung von Wirbelrollen und Konvektiver Grenzschicht bei Kaltluftausbrüchen über dem Meer, Ber. Instit. Meteorol. Klimatol. Univ. Hannover, 33, 154 pp.

  • Raasch, S.: 1990a, ‘Numerical Simulation of the Development of the Convective Boundary Layer During a Cold Air Outbreak’, Boundary-Layer Meteorol. 52 349–375.

    Google Scholar 

  • Raasch, S.: 1990b ‘Two Numerical Case Studies of Horizontal Roll Vortices in Near-Neutral Inversion Capped Planetary Boundary Layers’, Beitr. Phys. Atmos. 63 205–227.

    Google Scholar 

  • Holt, T. and Raman, S.: 1988, ‘A Review and Comparative Evaluation of Multilevel Boundary Layer Parameterizations for First Order and Turbulent Kinetic Energy Closure Schemes’, Rev. Geophys. 26 761–786.

    Google Scholar 

  • Schmidt, H. and Schumann, U.: 1989, ‘Coherent Structure of the Convective Boundary Layer Derived from Large-Eddy Simulations’, J. Fluid Mech. 200 511–562.

    Google Scholar 

  • Stage, S. A. and Businger, J. A.: 1981a, ‘A Model for Entrainment into a Cloud-Topped Marine Boundary Layer. Part I: Model Description and Application to a Cold Air Outbreak Episode’, J. Atmos. Sci. 38 2213–2229.

    Google Scholar 

  • Stage, S. A. and Businger, J. A.: 1981b, ‘A Model for Entrainment into a Cloud-Topped Marine Boundary Layer. Part II: Discussion of Model Behaviour and Comparison with other Models’, J. Atmos. Sci. 38 2230–2242.

    Google Scholar 

  • Stull, R. B.: 1984, ‘Transilient Turbulence Theory. Part I: The Concept of Eddy-Mixing Across Finite Distances’, J. Atmos. Sci. 41 3351–3367.

    Google Scholar 

  • Stull, R. B.: 1986, ‘Transilient Turbulence Theory. Part III: Bulk Dispersion Rate and Numerical Stability’, J. Atmos. Sci. 43 50–57.

    Google Scholar 

  • Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 666 pp.

    Google Scholar 

  • Stull, R. B. and Driedonks, A. G. M.: 1987, ‘Applications of the Transilient Turbulence Parameterization to Atmospheric Boundary-Layer Simulations’, Boundary-Layer Meteorol. 43 209–239.

    Google Scholar 

  • Sun, W.-Y.: 1989, ‘Numerical Study of Dispersion in the Convective Boundary Layer’, Atmos. Environ. 23 1205–1217.

    Google Scholar 

  • Sun, W.-Y. and Hsu, W. R.: 1988, ‘Numerical Study of a Cold Air Outbreak over the Ocean’, J. Atmos. Sci. 45 1205–1227.

    Google Scholar 

  • Sykes, R. L., Lewellen, W. S. and Henn, D. S.: 1990, ‘Numerical Simulation of the Boundary Layer Structure during Cold Air Outbreak of GALE IOP-2’, Mon. Wea. Rev. 118 363–374.

    Google Scholar 

  • Therry, G. and Lacarrere, P.: 1983, ‘Improving the Eddy Kinetic Energy Model for Planetary Boundary Layer Description’, Boundary-Layer Meteorol. 25 63–88.

    Google Scholar 

  • Weil, J. C.: 1990, ‘A Diagnosis of the Asymmetry in Top-Down and Bottom-Up Diffusion using a Lagrangian Stochastic Model’, J. Atmos. Sci. 47 501–515.

    Google Scholar 

  • Wyngaard, J. C.: 1984, ‘Toward Convective Boundary Layer Parameterization: A Scalar Transport Module’, J. Atmos. Sci. 41 1959–1969.

    Google Scholar 

  • Wyngaard, J. C.: 1987, ‘A Physical Mechanism for the Asymmetry in Top-Down and Bottom-Up Diffusion’, J. Atmos. Sci. 44 1083–1087.

    Google Scholar 

  • Wyngaard, J. C. and Brost, R. A.: 1984, ‘Top-Down and Bottom-Up Diffusion of a Scalar in the Convective Boundary Layer’, J. Atmos. Sci. 41 102–112.

    Google Scholar 

  • Young, G. S.: 1988, ‘Turbulence Structure of the Convective Boundary Layer. Part II: Phoenix 78 Aircraft Observations of Thermals and Their Environment’, J. Atmos. Sci. 45 727–735.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chrobok, G., Raasch, S. & Etling, D. A comparison of local and non-local turbulence closure methods for the case of a cold air outbreak. Boundary-Layer Meteorol 58, 69–90 (1992). https://doi.org/10.1007/BF00120752

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120752

Keywords

Navigation