Skip to main content
Log in

Gene flow by immigrants into isolated recipient populations: a laboratory model using flour beetles

  • Research Articles
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The effectiveness of immigrants as agents of gene flow was investigated in a laboratory model, using mutant marker strains of the flour beetle, Tribolium castaneum (Herbst).

We show that immigrants had an advantage over residents. The proportion of hybrid offspring (PHO), resulting from immigrant mating with residents, was higher than expected from their frequency in the parental population. This advantage was observed regardless of immigrant sex and immigrant strain. The advantage seems to result from immigrant mating advantage (although not a rare-male phenomenon) and not from better survival of hybrid offspring. However, hybrid offspring seem to be more resistant to sporozoan infection, resulting in higher PHO in sporozoan-infected cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AverhoffW. W. & RichardsonR. H., 1974. Pheromonal control of mating patterns in Drosophila melanogaster. Behav. Genet. 4: 207–225.

    Google Scholar 

  • Dobzhansky, T., 1970. Genetics of the evolutionary process. Columbia Univ. Press.

  • EhrmanL., 1966. Mating success and genotype frequency in Drosophila. Anim. Behav. 14: 332–339.

    Google Scholar 

  • EhrmanL., 1968. Frequency dependence of mating success in Drosophila pseudo-obscura. Genet. Res. 11: 135–140.

    Google Scholar 

  • EhrmanL., 1972. Rare male advantage and sexual isolation in Drosophila immigrans. Behav. Genet. 2: 79–84.

    Google Scholar 

  • EndlerJ. A., 1973. Gene flow and population differentiation. Science 179: 243–250.

    Google Scholar 

  • GraurD. & WoolD., 1985. Dynamics and genetics of mating behavior in Tribolium castaneum (Coleptera: Tenebrionidae). Behav. Genet. 12: 161–179.

    Google Scholar 

  • KobylianskyE., LivshitsG. & OrtemskiI., 1989. Ethnic and family factors of some common diseases in early childhood. Human Biology 61: 13–29.

    Google Scholar 

  • Mayr, E., 1963. Animal species and evolution. Harvard Univ. Press.

  • OgdenJ. C., 1970(a). Aspects of dispersal in Tribolium flour beetles. Physiol. Zool. 43: 124–131.

    Google Scholar 

  • OgdenJ. C., 1970(b). Artificial selection for dispersal in flour beetles. Ecology 51: 130–133.

    Google Scholar 

  • PetitC., 1958. Le determinisme genetique et Psychophysiologique de la competition sexuelle chez Drosophila melanogaster. Bull. Biol. Fr. Belg. 92: 248–329.

    Google Scholar 

  • PrusT., 1966. Emigrational ability and surface numbers of adult beetles in 12 strains of T. confusum Du Val and T. castaneum Herbst. (Coleoptera, Tenebrionidae). Ekol. Polska 14A: 548–588.

    Google Scholar 

  • RitteU. & AgurZ., 1977. Variability for dispersal behavior in a wild population of Tribolium castaneum. Tribolium Inf. Bull. 20: 122–131.

    Google Scholar 

  • RitteU. & LavieB., 1977. The genetic basis of dispersal behavior in Tribolium castaneum. Can. J. Genet. Cytol. 19: 717–722.

    Google Scholar 

  • SchlagerG., 1960. Sperm precedence in the fertilization of eggs in Tribolium castaneum. Ann. Ent. Soc. Amer. 53: 557–560.

    Google Scholar 

  • SinnockP., 1970. Frequency dependence and mating behavior in Tribolium castaneum. Amer. Natur. 104: 469–476.

    Google Scholar 

  • SlatkinM., 1977. Gene flow and genetic drift in a species subject to frequent local extinctions. Theor. Pop. Biol. 12: 253263.

    Google Scholar 

  • SlatkinM., 1981. Estimating levels of gene flow in natural populations. Genetics 99: 323–335.

    Google Scholar 

  • SlatkinM., 1985a. Rare alleles as indicators of gene flow. Evolution 39: 53–65.

    Google Scholar 

  • SlatkinM., 1985b. Gene flow in natural populations. Ann. Rev. Ecol. Syst. 16: 393–430.

    Google Scholar 

  • SlatkinM. & BartonN. H., 1989. A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43: 1349–1368.

    Google Scholar 

  • SokalR. R., KenceA. & McCauleyD. E., 1974. The survival of mutants at very low frequencies in Tribolium populations. Genetics 77: 805–818.

    Google Scholar 

  • Sokal, R. R. & Rohlf, F. J., 1981, Biometry, 2nd Ed. Freeman.

  • Sokoloff, A., 1966. Genetics of Tribolium and related species. Academic press.

  • Sokoloff, A., 1972. The Biology of Tribolium vol. I. Oxford.

  • Sokoloff, A., 1974. The Biology of Tribolium. Vol. II. Oxford.

  • Sokoloff, A., 1977. The Biology of Tribolium vol. III. Oxford.

  • SpiessE. B., 1982. Do female flies choose their mates? Amer. Natur. 119: 675–693.

    Google Scholar 

  • SpiessE. B. & SpiessL. D., 1967. Mating propensity, chromosomal polymorphism and dependent conditions in Drosophila persimilis. Evolution 21: 672–678.

    Google Scholar 

  • WoolD., 1967. Some observations on mating frequencies in Tribolium castaneum strains. Tribolium Inform. Bull. 10: 182–186.

    Google Scholar 

  • WoolD., 1970. Deviation of zygotic frequencies from expectation in eggs of Tribolium castaneum. Genetics 66: 155–132.

    Google Scholar 

  • WoolD., 1982. Critical examination of postulated cladistic relationships among flour beetles (genus Tribolium, Tenebrionidae, Coleoptera). Biochem. Genet. 20: 333–349.

    Google Scholar 

  • WoolD., 1987. Differentiation of island populations: a laboratory model. Amer. Natur. 129: 188–202.

    Google Scholar 

  • WoolD. & BergersonO., 1979. Sperm precedence in repeated mating of adults of Tribolium castaneum (Coleoptera, Tenebrionidae). Ent. exp. & Appl. 26: 157–160.

    Google Scholar 

  • WoolD., BrowerJ. H. & Kamin-BelskyN., 1988. The genetic impact of immigrant males on resident populations of the almond moth, Ephestia cautella (Walker) (Lep. Phyticidae). J. Appl. Ent. 106: 339–344.

    Google Scholar 

  • WrightS., 1943. Isolation by distance. Genetics 28: 114–138.

    Google Scholar 

  • ZieglerJ. R., 1976. Evolution of the migration response: emigration by Tribolium and the influence of age. Evolution 30: 579–592.

    Google Scholar 

  • ZieglerJ. R., 1977. Dispersal and reproduction in Tribolium, the influence of food level. J. Insect Physiol. 23: 955–960.

    Google Scholar 

  • ZieglerJ. R., 1978. Dispersal and reproduction in Tribolium: the influence of initial density. Environ. Entomol. 7: 148–156.

    Google Scholar 

  • Zyromska-RudskaH., 1966. Abundance and emigrations of Tribolium in a laboratory model. Ekol. Polska 14A: 491–518.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaufman, B., Wool, D. Gene flow by immigrants into isolated recipient populations: a laboratory model using flour beetles. Genetica 85, 163–171 (1992). https://doi.org/10.1007/BF00120323

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120323

Keywords

Navigation