Skip to main content
Log in

On the role of roughness lengths in flux parameterizations of boundary-layer models

  • Research Note
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Flux-profile relationships based on surface-layer similarity theory are used to derive relationships between the Monin-Obukhov stability parameter ξ = z/L and the bulk Richardson number Ri b . In contrast to previous studies, the roughness length for heat, z 0h ,is assumed unequal to the roughness length for momentum, z 0m .For the stable case, an analytic expression of ζ in terms of Ri b can be derived and in the unstable case, the solution is obtained through a simple iterative process.

Errors introduced from the simplification of z 0h = z 0m are evaluated and are shown to be very significant in most cases. Thus, this error in many practical applications may invalidate the intended solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Badgley, E. F.: 1971, ‘Flux Profile Relationships in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 181–189.

    Google Scholar 

  • Brutsaert, W.: 1982, Evaporation into the Atmosphere, D. Reidel Publishing Co., Holland, 299 pp.

    Google Scholar 

  • Byun, D. W.: 1990, ‘On the Analytical Solutions of Flux-Profile Relationships for the Atmospheric Surface Layer’, J. Appl. Meteorol. 29, 652–657.

    Google Scholar 

  • Charnock, H.: 1955, ‘Wind Stress on the Water Surface’, Quart. J. Roy. Meteorol. Soc. 81, 639–640.

    Google Scholar 

  • Daggupaty, S. M., Tangirala, R. S., and Sahota, H.: 1994, ‘BLFMESO-A 3-Dimensional Mesoscale Meteorological Model for Microcomputers’, Boundary-Layer Meteorol. 71, 81–107.

    Google Scholar 

  • Dyer, A. J.: 1974, ‘A Review of Flux-Profile Relationships’, Boundary-Layer Meteorol. 7, 363–372.

    Google Scholar 

  • Dyer, A. J. and Bradley, E. F.: 1982, ‘An Alternative Analysis of Flux-Gradient Relationships at the 1976 ITCE’, Boundary-Layer Meteorol. 22, 3–19.

    Google Scholar 

  • Donelan, M.: 1990, ‘Air-Sea Interaction’, reprinted from The Sea; pp. 239–292, in B. le Mehaute and D. M. Hanes (eds.), The Sea: Ocean Engineering Science, Vol. 9B, Wiley-Interscience, New York.

    Google Scholar 

  • Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, 316 pp.

  • Geernaert, G. and Larsen, S.: 1993, ‘On the Role of Humidity in Estimating Marine Surface Layer Stratification and Scatterometer Cross Section’, J. Geophys. Res. 98, 927–932.

    Google Scholar 

  • Hignett, P.: 1994, ‘Roughness Lengths for Temperature and Momentum over Heterogeneous Terrain’, Boundary-Layer Meteorol. 68, 225–236.

    Google Scholar 

  • Hogstrom, U.: 1988, ‘Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer: A Re-Evaluation’, Boundary-Layer Meteorol. 42, 55–78.

    Google Scholar 

  • Kader, B. A. and Yaglom, A. M.: 1970, ‘Heat and Mass Transfer Loss for Fully Turbulent Wall Flows’, Int. J. Heat and Mass Transfer 15, 2329–2353.

    Google Scholar 

  • Lo, A. K.: 1996, ‘Deposition Velocities of Reactive Gases Across an Air- Water Interface’, Atmospheric Environment, 30, 2329–2334.

    Google Scholar 

  • Lo, A. K.: 1995, ‘Determination of Zero-Plane Displacement and Roughness Length of a Forest Canopy Using Profiles of Limited Height’, Boundary-Layer Meteorol. 75, 381–402.

    Google Scholar 

  • Lo, A. K. and McBean, G. A.: 1978, ‘On the Relative Errors in Methods of Flux Calculations’, J. Appl. Meteorol. 17, 1704–1711.

    Google Scholar 

  • Louis, J.: 1979, ‘A Parametric Model of Vertical Eddy Fluxes in the Atmosphere’, Boundary-Layer Meteorol. 17, 187–202.

    Google Scholar 

  • Miller, M. J., Beljaars, A. C. M., and Palmer, T. N.: 1992, ‘The Sensitivity of the ECMWF Model to the Parameterization of Evaporation from the Tropical Ocean’, J. Climate 5, 418–434.

    Google Scholar 

  • Oncley, S. P. and Dudhia, J.: 1995, ‘Evaluation of Surface Fluxes from MM5 Using Observations’, Mon. Wea. Rev. 123, 3344–3357.

    Google Scholar 

  • Oncley, S. P., Fratchy, C. A., Large, J. C., Businger, J. A., Itsweire, E. C., and Chang, S. S.: 1996, ‘Surface-Layer Fluxes, Profiles, and Turbulence Measurements over Uniform Terrain under Near-Neutral Conditions’, J. Atmos. Sci. 53, 1029–1044.

    Google Scholar 

  • Smith, S. D.: 1980, ‘Wind Stress and Heat Flux over the Ocean in Gale Force Winds’, J. Phys. Oceanogr. 10, 709–726.

    Google Scholar 

  • Smith, S. D., Anderson, R. J., Oost, W. A., Kraan, C., Maat, Nico, DeCosmo, J., Katsares, K. B., Davidson, K. L., Bumke, K., Hasse, L., and Chadwish, H. M.: 1992, ‘Sea Surface Wind Stress and Drag Coefficients: The HEXOS Results’, Boundary-Layer Meteorol. 60, 109–142.

    Google Scholar 

  • Toba, Y. and Ebuchi, N.: 1991, ‘Sea-Surface Roughness Length Fluctuating in Concert with Wind and Waves’, J. Oceanogr. Soc. Japan 47, 63–79.

    Google Scholar 

  • Wieringa, J.: 1980, ‘A Revaluation of the Kansas Mast Influence on Measurements of Stress and Cup Anemometer Overspeeding’, Boundary-Layer Meteorol. 18, 411–430.

    Google Scholar 

  • Zilitinkevich, S. S. and Chalikov, D. V.: 1968, ‘Determining the Universal Wind-Velocity and Temperature Profiles in the Atmospheric Boundary Layer’, Izv. Atmospheric Oceanic Physics 4,294–302 (English version: pp. 165–170).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kou-Fang Lo, A. On the role of roughness lengths in flux parameterizations of boundary-layer models. Boundary-Layer Meteorol 80, 403–413 (1996). https://doi.org/10.1007/BF00119425

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119425

Keywords

Navigation