Skip to main content
Log in

NMR studies on single crystals of H2: I. The crystalline field energy for ortho-H2 impurities in solid para-H2

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Using NMR techniques on two single crystals of H2, we have determined the crystalline field V c that splits the rotational ground state of isolated ortho-H2 molecules in para-H2. From the temperature-dependent splitting of the NMR doublet peak, we obtain an average % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG8bacbaGab8% NvayaaraWaaSbaaSqaaiaa-ngaaeqaaOGaaiiFaiaac+cacaWFRbWa% aSbaaSqaaiaa-jeaaeqaaOGaeyypa0JaaGimaiaac6cacaaIWaGaaG% imaiaaiIdacaaIZaGaeyySaeRaaGimaiaac6cacaaIWaGaaGimaiaa% ikdacaqGGaGaa83saaaa!4563!\[|\bar V_c |/k_B = 0.0083 \pm 0.002{\rm{ }}K\] independent of ortho concentration X over the range between x= 0.1% and 1.5%. The experimental spectra, as a function of both T and the applied field orientation, can be fitted by a model where V c has a Gaussian distribution about its average value with a standard deviation V c289-03. This distribution might be caused by strains in the sample. The values of δV c are compared with those from previous experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. N. Hardy, J. Berlinsky, and A. B. Harris, Can. J. Phys. 55, 1150 (1977).

    Google Scholar 

  2. V. A. Popov, V. B. Kokshenev, V. G. Manzhelii, M. A. Strzhemechny, and E. I. Voitovich, J. Low Temp. Phys. 26, 979 (1977).

    Google Scholar 

  3. S. A. Boggs and H. L. Welsh, Can. J. Phys. 51, 1910 (1973).

    Google Scholar 

  4. H. P. Gush and J. Van Kranendonk, Can. J. Phys. 40, 1461 (1962).

    Google Scholar 

  5. I. Silvera, W. N. Hardy, and J. P. McTague, Phys. Rev. B 4, 2724 (1971).

    Google Scholar 

  6. J. H. Constable and J. R. Gaines, Solid State Comm. 9, 155 (1977).

    Google Scholar 

  7. W. N. Hardy and J. R. Gaines, Phys. Rev. Lett. 17, 1278 (1966).

    Google Scholar 

  8. W. N. Hardy and J. R. Gaines, as quoted by C. C. Sung. Phys. Rev. 167, 271 (1968).

    Google Scholar 

  9. W. N. Hardy and J. R. Gaines, Phys. Rev. Lett. 19, 1417 (1967).

    Google Scholar 

  10. R. F. Buzerak, M. Chan, and H. Meyer, J. Low Temp. Phys. 28, 415 (1977).

    Google Scholar 

  11. J. R. Gaines, A. Mukherjii, and Y. C. Shi, Phys. Rev. B 17, 4188 (1978).

    Google Scholar 

  12. J. H. Constable, Y. C. Shi, and J. R. Gaines, Solid State Comm. 18, 689 (1976); Phys. Lett. 66A, 122 (1978).

    Google Scholar 

  13. L. Amstutz, J. Thompson, and H. Meyer, Phys. Rev. Lett. 21, 1175 (1968).

    Google Scholar 

  14. P. Pedroni, M. Chan, R. Schweizer, and H. Meyer, J. Low Temp. Phys. 19, 537 (1975).

    Google Scholar 

  15. R. Schweizer, S. Washburn, and H. Meyer, Phys. Rev. Lett. 40, 1036 (1978); Erratum: Phys. Rev. Lett. 41, 913 (1978).

    Google Scholar 

  16. A. B. Harris, L. Amstutz, H. Meyer, and S. M. Myers, Phys. Rev. 175, 603 (1968).

    Google Scholar 

  17. J. Van Kranendonk and V. F. Sears, Can. J. Phys. 44, 313 (1966).

    Google Scholar 

  18. J. C. Raich and L. B. Kanney, J. Low Temp. Phys. 28, 95 (1977).

    Google Scholar 

  19. S. Luryi, J. Van Kranendonk, and J. Noolandi, Phys. Rev. Lett. 38, 418 (1977).

    Google Scholar 

  20. A. B. Harris, A. J. Berlinsky, and W. N. Hardy, Can. J. Phys. 55, 1180 (1977).

    Google Scholar 

  21. A. B. Harris and A. J. Berlinsky, Solid State Comm. 24, 159 (1977).

    Google Scholar 

  22. M. Fujio, J. Hama, and T. Nakamura, Prog. Theor. Phys. 54, 293 (1975).

    Google Scholar 

  23. F. N. H. Robinson, J. Sci. Instr. 36, 481 (1959).

    Google Scholar 

  24. P. Deschamps, J. Vaissiere, and N. S. Sullivan, Rev. Sci. Instr. 48, 664 (1977).

    Google Scholar 

  25. G. W. Smith, J. Appl. Phys. 35, 1217 (1964).

    Google Scholar 

  26. J. R. Thompson and J. O. Thomson, Rev. Sci. Instr. 48, 1713 (1977).

    Google Scholar 

  27. P. Pedroni, F. Weinhaus, H. Meyer, and D. Haase, Solid State Comm. 14, 279 (1974) and references therein.

    Google Scholar 

  28. W. N. Hardy, I. F. Silvera, and J. P. McTague, Phys. Rev. B 12, 753 (1975) and references therein.

    Google Scholar 

  29. R. Schweizer, S. Washburn, H. Meyer, and A. B. Harris, J. Low Temp. Phys., this issue, following paper.

  30. S. Luryi and J. Van Kranendonk, to be published.

  31. F. Reif and E. M. Purcell, Phys. Rev. 91, 631 (1953).

    Google Scholar 

  32. S. Washburn, R. Schweizer, and H. Meyer, to be published (paper III in this series).

  33. D. Greywall, Phys. Rev. B 18, 2127 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by a grant from the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schweizer, R., Washburn, S. & Meyer, H. NMR studies on single crystals of H2: I. The crystalline field energy for ortho-H2 impurities in solid para-H2 . J Low Temp Phys 37, 289–308 (1979). https://doi.org/10.1007/BF00119191

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119191

Keywords

Navigation