Skip to main content
Log in

Stability of monoclinic phase in pure and Gd-doped HfO2: a hyperfine interaction study

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

A Correction to this article was published on 05 September 2019

This article has been updated

Abstract

The present Time Differential Perturbed γ-γ Angular Correlation (TDPAC) measurements in bulk HfO2 report, for the first time, the presence of three regular sites at ambient condition, apart from the stable monoclinic phase (m-HfO2). Also, the effects of Gd impurity (5 at%) on HfO2 crystal structure was investigated by PAC. In pure HfO2, apart from the monoclinic component (~76%), four other minor frequency components have been found at room temperature. To further investigate the origin of these minor frequency components, PAC measurement at 673 K was performed. At 673 K, population of two of the four minor components was enhanced at the expense of the m-HfO2 as the population of m-HfO2 reduces to ~58%. On doping with 5 at% Gd, the population of monoclinic site drastically reduced to ~10% while one of the minor components got enhanced to a large extent (68%). The enhancements of the three minor components, both by temperature or by Gd impurity, indicate that these are the regular phases of HfO2 and could therefore be attributed to three orthorhombic phases of HfO2. The fourth minor component (5–10%) with values of ωQ ~ 7 Mrad/s, η = 0 can be assigned to crystalline defect site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 05 September 2019

    Due to technical constraints this article was published in volume 240:1 with erroneous article citation ID number 8 whereas this should have been 78 which is corrected as such. Springer Nature sincerely apologizes towards the author(s) for the inconvenience caused.

References

  1. Wilk, G.D.: High-κ gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89, 5243–5275 (2001)

    ADS  Google Scholar 

  2. Wilk, G.D., Wallace, R.M., Anthony, J.M.: Hafnium and zirconium silicates for advanced gate dielectrics. J. Appl. Phys. 87, 484–492 (2000)

    Article  ADS  Google Scholar 

  3. Nguyen, N.V., Albert, D., Chandler-Horowitz, D.: Sub-bandgap defect states in polycrystalline hafnium oxide and their suppression by admixture of silicon. Appl. Phys. Lett. 87, 192903 (2005)

    Article  ADS  Google Scholar 

  4. Venkatesan, M., Fitzgerald, C.B., Coey, J.M.D.: Unexpected magnetism in a dielectric oxide. Nature. 430, 630 (2004)

    Article  ADS  Google Scholar 

  5. Mueller, S., Adelmann, C., Singh, A., Van Elshocht, S.: SchroederU., Mikolajick,T.:ferroelectricity in Gd-doped HfO2 thin Films.ECS J. solid state. Sci. Technol. 1(6), N123–N126 (2012)

    Google Scholar 

  6. Sang, X., Grimley, E.D., Schenk, T., Schroeder, U., LeBeau, J.M.: On the structural origins of ferroelectricity in HfO2 thin films. Appl. Phys. Lett. 106, 162905 (2015)

    Article  ADS  Google Scholar 

  7. Fancher, C.M., Zhao, L., Nelson, M., Bai, L., Shen, G., Jones, J.L.: Pressure-induced structures of Si-doped HfO2. J. Appl. Phys. 117, 234102 (2015)

    Article  ADS  Google Scholar 

  8. Ohtaka, O., Yamanaka, T., Kume, S., Hara, N., Asano, H., Izumi, F.: Structural analysis of orthorhombic hafnia by neutron powder diffraction. J. Am. Ceram. Soc. 78(1), 233–237 (1995)

    Article  Google Scholar 

  9. Huan, T.D., Sharma, V., Rossetti Jr., G.A., Ramprasad, R.: Pathways towards ferroelectricity in hafnia. Phys. Rev. B. 90, 064111 (2014)

    Article  ADS  Google Scholar 

  10. Ayala, A., Alonso, R., López-García, A.: Temperature dependence of the hyperfine electric-field-gradient tensor at 181Ta in HfO2. Phys. Rev. B. 50, 3547–3552 (1994)

    Article  ADS  Google Scholar 

  11. Taylor, M.A., Alonso, R.E., Errico, L.A., López-García, A., de la Presa, P., Svane, A., Christensen, N.E.: Coexistence of different charge states in ta-doped monoclinic HfO2: theoretical and experimental approaches. Phys. Rev. B. 82, 165203 (2010)

    Article  ADS  Google Scholar 

  12. Catchen, G.L.: Perturbed-angular-correlation spectroscopy: renaissance of a nuclear technique. MRS Bull. 20(7), 37–46 (1995)

    Article  Google Scholar 

  13. Schatz, G., Weidinger, A.: Nuclear Condensed Matter Physics; Nuclear Methods and Application. translated by J. A. Gardner. John Wiley, New York (1996)

    Google Scholar 

  14. Dey, C.C.: A perturbed angular correlation spectrometer for material science studies. Pramana. 70(5), 835–846 (2008)

    Article  ADS  Google Scholar 

  15. Banerjee, D., Gupta, S.K., Patra, N., Raja, S.W., Pathak, N., Bhattacharyya, D., Pujari, P.K., Thakare, S.V., Jha, S.N.: Unraveling doping induced anatase–rutile phase transition in TiO2 using electron, X-ray and gamma-ray as spectroscopic probes. Phys. Chem. Chem. Phys. 20, 28699–28711 (2018)

    Article  Google Scholar 

  16. Banerjee, D., Das, P., Guin, R., Das, S.K.: Nuclear quadrupole interaction at 181Ta in hafnium dioxide fiber: time differential perturbed angular correlation measurements and ab initio calculations. J. Phys. and Chem. of Solids. 73(9), 1090–1094 (2012)

    Article  ADS  Google Scholar 

  17. Forker, M., de la Presa, P., Hoffbauer, W., Schlabach, S., Bruns, M., Szabó, D.V.: Structure, phase transformations, and defects of HfO2 and ZrO2 nanoparticles studied by 181Ta and 111Cd perturbed angular correlations, 1H magic-angle spinning NMR, XPS, and x-ray and electron diffraction. Phys. Rev. B. 77, 054108 (2008)

    Article  ADS  Google Scholar 

  18. Hoffmann, M., Schroeder, U., Schenk, T., Shimizu, T., Funakubo, H., Sakata, O., Pohl, D., Drescher, M., Adelmann, C., Materlik, R., Kersch, A., Mikolajick, T.: Stabilizing the ferroelectric phase in doped hafnium oxide. J. Appl. Phys. 118, 072006 (2015)

    Article  ADS  Google Scholar 

  19. Lee, Choong-Ki, Cho, E., Lee, H., Hwang, C., S., Han, S.: First-principles study on doping and phase stability of HfO2. Phys. Rev. B 78, 012102 (2008)

  20. Wang, L.G., Xiong, Y., Xiao, W., Cheng, L., Du, J., Tu, H., van de Walle, A.: Computational investigation of the phase stability and the electronic properties for Gd-doped HfO. Appl. Phys. Lett. 104, 201903 (2014)

    Article  ADS  Google Scholar 

  21. Batra, R., Huan, T.D., Rossetti Jr., G.A., Ramprasad, R.: Dopants promoting ferroelectricity in hafnia: insights from a comprehensive chemical space exploration. Chem. Mater. 29(21), 9102–9109 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Authors sincerely thank all the members at DHRUVA reactor, BARC, Mumbai, India for successfully producing the probe nuclei at desired activity level.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis Banerjee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on Hyperfine Interactions and their Applications (HYPERFINE 2019), Goa, India, 10-15 February 2019

Edited by S. N. Mishra, P. L. Paulose and R. Palit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, D., Dey, C.C., Raja, S.W. et al. Stability of monoclinic phase in pure and Gd-doped HfO2: a hyperfine interaction study. Hyperfine Interact 240, 78 (2019). https://doi.org/10.1007/s10751-019-1614-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-019-1614-7

Keywords

Navigation