Skip to main content
Log in

Low-frequency kinetics of high-T c metal oxides

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

A microscopic explanation of the low-frequency kinetic properties of metal oxides is proposed. It is based on a strong electron-phonon interaction, which forms a charged Bose liquid of small bipolarons. The large value, the nonKorringa temperature dependence above T c, and the absence below T c of the coherent peak of the nuclear spin relaxation, as well as an unexpected “coherent peak” of the low frequency dynamic conductivity and the linear T-dependence of the resistivity are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Millis, H. Monien, and D. Pines, Phys. Rev. B 42, 167 (1990).

    Google Scholar 

  2. K. Levin, Yu H. Kim, J. P. Lu, and Qimiao Si, Physica C 175, 449 (1991).

    Google Scholar 

  3. T. Brückel, H. Capellmann, W. Just, O. Schärpf, S. Kemmler-Sach, R. Kiemel, and W. Schaefer, Europhys. Lett. 4, 1189 (1987).

    Google Scholar 

  4. J. Rossat-Mignod, L. P. Regnault, C. Vettier, P. Burlet, J. Y. Henry, and G. Lapertot, Invited paper presented at the “VIe International School in Neutron Physics”, Alushta, URSS, October 8–18 (1990); Physica B 169, 58 (1991).

  5. C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989).

    Google Scholar 

  6. T.Machi, I. Tomeno, T. Miyatake, N. Koshizuka, and S. Tanaka, Physica C 173, 32 (1991).

    Google Scholar 

  7. D. Brinkmann, in Progress in High Temperature Superconductivity, V. L.Aksenov, N. N. Bogolubov, and N. M. Plakida, eds. (World Scientific, Singapore 1989), vol. 21, p. 230; G. Shirane, ibid, p. 63; W. W. Warren Jr., R. E. Walstedt, G. F. Brennert, R. J. Cava, R. Tyeko, R. F. Bell, and G. Dabbagh, Phys. Rev. Lett. 62, 1193 (1989).

    Google Scholar 

  8. Martin, C., C. Nuss, P. M. Maukiewich, M. L. O'Malley, and E. H. Westerwick, Phys. Rev. Lett. 66, 3305 (1991).

    Google Scholar 

  9. K. Holczer, L. Forro, L.Mihály, and G. Grüner, Phys. Rev. Lett. 67, 152 (1991).

    Google Scholar 

  10. A. Alexandrov and J. Ranninger, Phys. Rev. B 23, 1796 (1981); Phys. Rev. B 24, 1164 (1981).

    Google Scholar 

  11. A. S. Alexandrov and V. V. Kabanov, Fiz. Tverd. Tela 28, 1129 (1986) (Sov. Phys. Solid State 28, 631 (1986)).

    Google Scholar 

  12. S. Lakkis, C. Schlenker, V. K. Chakraverty, and R.Buder, Phys. Rev. B 14, 1429 (1976); C. Schlenker, S. Ahmed, R. Buder, and M. Gourmala, J. Phys. C, 12, 3503 (1979); V. K. Chakraverty, M. J. Sienko, and J. Bonnerot, Phys. Rev. B 17, 3781 (1978).

    Google Scholar 

  13. A. S. Alexadrov and A. B. Krebs, Pis'ma Zh. Eksp. Teor. Fiz. 50, 280 (1989) (Sov. Phys.-JETP Lett. 50, 311 (1989)); A. S. Alexnadrov, H. Capellmann, Phys. Rev. B 43, 2042 (1991).

    Google Scholar 

  14. H. de Raedt and A. Lagendijk, Z. Phys. B 65, 43 (1986).

    Google Scholar 

  15. F. Mila and T. M. Rice, Physica C 157, 561 (1989); Phys. Rev. B 40, 11382 (1989).

    Google Scholar 

  16. L. J. de Jongh, Physica C 152, 171 (1988).

    Google Scholar 

  17. A. S. Alexandrov, Physica C 191, 115 (1992).

    Google Scholar 

  18. A. S. Alexandrov and J. Ranninger, Physica C 159, 367 (1989).

    Google Scholar 

  19. N. Mott, Adv. in Phys. 39, 55 (1990).

    Google Scholar 

  20. P. W. Anderson, Science 235, 1196 (1987).

    Google Scholar 

  21. The argument against the bosonic (charge e) nature of the linear T-dependence of the resistivity appeared in literature (see J. Z. Wu, C. S. Ting, D. Y. Xing, Phys. Rev. B 40, 9296 (1989), and also W. Pint, E. Schachinger, Phys. Rev. B 43, 7664 (1991)), and is based on the random-phase approximation for the Coulomb scattering, which gives an infinitely large static dielectric constant for T → 0 in case of bosons. However, the screaning radius is restricted by the lattice constant, and for the short-range impurity potential both the fermionic and bosonic impurity resistivity is the same. Thus the argument by Wu et al. seems to be irrelevant.

    Google Scholar 

  22. C. Taliani, E. Zambone, G. Raum, F. C. Matacotta and K. I. Pokhodnya, Solid State Commun. 66, 487 (1988); D. M. Foster, A. J. Heeger, G. Stacky, and N. Herron, Solid State Commun. 71, 945 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexandrov, A.S. Low-frequency kinetics of high-T c metal oxides. J Low Temp Phys 87, 721–729 (1992). https://doi.org/10.1007/BF00118331

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00118331

Keywords

Navigation