Skip to main content
Log in

Heat capacities of granular aluminum films near the superconducting transition

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The electrical conductivity and heat capacity were studied in the superconducting transition region of 1000-» thick, disordered, granular films that were evaporated onto cleaved mica substrates. The resistive transitions of films were used as thermometers in conjunction with optical heating in an ac calorimetry scheme to measure the temperature dependence of the 5 × 10−9 J/K heat capacity of the films. Results obtained on nine samples indicated a rise in the heat capacity near the low-temperature limit of the transition region where film resistances became zero. This rise peaked in four films at values substantially greater than the estimated Bardeen-Cooper-Schrieffer jump in heat capacity and at temperatures 20–40 mK below the transition temperatures determined from a fit of the mean field theory to conductivity measurements. Quantitative comparison with theory cannot be made because transitions are broadened by film thickness variations resulting from irregular substrate topography. Results are in qualitative disagreement with the monotonic variation of the excess heat capacity calculated in the Hartree approximation. Observed peaks are also both wider and higher than those predicted by 1/n expansion and screening approximation calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Landau, Phys. Z. Sowjet Union 11, 26 (1937); reprinted in Collected Papers of L. D. Landau, D. ter Haar, ed. (Pergamon, New York, 1969), p. 61.

    MATH  Google Scholar 

  2. D. J. Thouless, Ann. Phys. 10, 553 (1960).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. J. F. Cochran, Ann. Phys. 19, 186 (1962).

    Article  ADS  Google Scholar 

  4. R. A. Ferrell, J. Low Temp. Phys. 1, 241 (1969).

    Article  Google Scholar 

  5. P. A. Lee and S. R. Shenoy, Phys. Rev. Lett. 28, 1025 (1972).

    Article  ADS  Google Scholar 

  6. R. F. Hassing, R. R. Hake, and L. J. Barnes, Phys. Rev. Lett. 30, 6 (1973); Phys. Rev. Lett. 30, 305 (E) (1973).

    Article  ADS  Google Scholar 

  7. L. G. Aslamazov and A. I. Larkin, Fiz. Tverd. Tela 10, 1104 (1968) [English transl., Soviet Phys.—Solid State 10, 875 (1968).

    Google Scholar 

  8. L. Gunther and L. W. Gruenberg, Solid State Commun. 10, 567 (1972).

    Article  Google Scholar 

  9. G. D. Zally and J. M. Mochel, Phys. Rev. Lett. 27, 1710 (1971); G. D. Zally and J. M. Mochel, Phys. Rev. B 6, 4142(1972).

    Article  ADS  Google Scholar 

  10. D. J. Scalapino, R. A. Ferrell, and A. J. Bray, Phys. Rev. Lett. 31, 292 (1973).

    Article  ADS  Google Scholar 

  11. G. Rickayzen and A. J. Bray, J. Phys. F: Metal Phys. 2, L109 (1972); J. Phys. F: Metal Phys. 3, L134 (1973).

    Article  Google Scholar 

  12. P. Sullivan and G. Seidel, Phys. Rev. 173, 679 (1968).

    Article  ADS  Google Scholar 

  13. J. C. Solinsky and A. M. Goldman, Phys. Lett. 47A, 359 (1974).

    Article  Google Scholar 

  14. M. K. Chien and R. E. Glover III, in Low Temperature Physics LT-13, K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel, eds. (Plenum Press, New York, 1974), Vol. 3, p. 649.

    Google Scholar 

  15. B. I. Halperin, T. C. Lubensky, and S. K. Ma, Phys. Rev. Lett. 32, 292 (1974).

    Article  ADS  Google Scholar 

  16. G. Deutscher, H. Fenichel, M. Gershenson, E. Grunbaum, and Z. Ovàdyahu, J. Low Temp. Phys. 10, 231 (1973).

    Article  Google Scholar 

  17. K. Maki, Progr. Theoret. Phys. 40, 193 (1968).

    Article  ADS  Google Scholar 

  18. R. S. Thompson, Phys. Rev. B 1, 327 (1970).

    Article  ADS  Google Scholar 

  19. B. R. Patton, Phys. Rev. Lett. 27, 1273 (1971).

    Article  ADS  Google Scholar 

  20. S. Marcelja, W. E. Masker, and R. D. Parks, Phys. Rev. 188, 745 (1969).

    Article  ADS  Google Scholar 

  21. A. J. Bray, Phys. Rev. B 9, 4752 (1974).

    Article  ADS  Google Scholar 

  22. R. Meserveyand P. M. Tedrow, J. Appl. Phys. 42, 51 (1971).

    Article  ADS  Google Scholar 

  23. R. S. Thompson, M. Strongin, O. F. Kammerer, and J. E. Crow, Phys. Lett. 29A, 194 (1969).

    Article  Google Scholar 

  24. P. Pellan, G. Dousselin, H. Cortes, and J. Rosenblatt, Solid State Commun. 11, 427 (1972).

    Article  Google Scholar 

  25. G. Deutscher, Y. Imry, and L. Gunther, Phys. Rev. B 10, 4598 (1974).

    Article  ADS  Google Scholar 

  26. B. Abeles, R. W. Cohen, and W. R. Stowell, Phys. Rev. Lett. 18, 902 (1967).

    Article  ADS  Google Scholar 

  27. R. V. Carlson and A. M. Goldman, Phys. Rev. Lett. 34, 11 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the U. S. Atomic Energy Commission under contract AT(11-1)-1569.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldman, A.M., Solinsky, J.C. & Magee, T.J. Heat capacities of granular aluminum films near the superconducting transition. J Low Temp Phys 20, 339–363 (1975). https://doi.org/10.1007/BF00117801

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00117801

Keywords

Navigation