Skip to main content
Log in

Stress intensity factor solution for crotch-corner cracks of tee-intersections of cylindrical shells

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Crotch corner zones are of considerable concern in investigating the margin of safety against brittle fracture for tee intersections of nozzles with vessels and branch pipes with run pipes. This requires an estimate of stress intensity factor, i.e. K-factor for either postulated or detected cracks in this region. The high computational costs involved in using three dimensional finite elements suggests the development of a simple and accurate method to calculate K-factors for such cracks. In this paper, existing solutions for corner cracks at the intersections of nozzles with plates or vessels are reviewed and an empirical relationship is developed for K-factors of such cracks.

In addition, a general method is proposed to predict K-factors of corner cracks using stress concentration. This method gives results, which are in good agreement with existing data for nozzle corner cracks and is used to predict K-factor for tee-intersections of pipes. The loading considered was internal pressure only.

Résumé

Les zônes de raccordement de coin sont d'un intérêt considérable lors des investigations sur la marge de sécurité contre la rupture fragile d'intersections en T de piètements avec des réservoirs ainsi que de connections de tuyaux latéraux à un tuyau principal. Ceci requiert une estimation du facteur d'intensité de contrainte, à savoir le facteur K, aussi bien pour des défauts supposés que pour des défauts détectés dans ces régions. Les coûts élevés des calculs que comporte l'utilisation d'éléments finis à 3 dimensions suggèrent le développement d'une méthode simple et précise pour le calcul et les facteurs de contrainte K pour ces fissures. Dans ce mémoire, les solutions existantes pour les fissurations de coin aux intersections de piètements avec des tôles et avec des réservoirs sont passées en revue et une relation empirique est proposée pour des facteurs K caractérisant ces fissures.

En outre, une méthode générale est proposée pour prédire les facteurs K de fissures de coin en utilisant la concentration des tensions. Cette méthode fournit des résultats qui sont en bon accord avec les données existantes pour les fissures de coin relatives à des piètements et est utilisée pour prédire le facteur K dans le cas d'intersections en T de tubes. On a considéré comme mise en charge seulement la pression interne.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Miazano and K. Shibata, Third International Conference on Structural Mechanics in Reactor Technology, London (1975) G4/8.

  2. T. Fujimura et al., Second International Conference on Pressure Vessel Technology, San Antonio (1973) 801–819.

  3. A. Pickett and Grigory, Welding Research Council Bulletin, 135 (1968).

  4. Y. Rashid and J. Gilman, First International Conference on Structural Mechanics in Reactor Technology, Berlin (1971) G2/6.

  5. Welding Research Council, Bulletin 175 (1972).

  6. J. Reynen, Third International Conference on Structural Mechanics in Reactor Technology, London (1975) G5/1.

  7. T. Hellen and A. Dowling, International Journal of Pressure Vessels and Piping, 3 (1975) 57–74.

    Google Scholar 

  8. M. Broekhoven, Third International Conference on Structural Mechanics in Reactor Technology, London (1975) G4/6.

  9. M. Broekhoven and H. Spaas, Rep. mm. pp-101, Delft University of Technology, Netherlands, Aug. (1974).

  10. W. Schmitt et al., International Journal of Fracture, 12 (1976) 381–390.

    Google Scholar 

  11. W. Schmitt, International Journal of Pressure Vessels and Piping, 3 (1975) 123–136.

    Google Scholar 

  12. M. Broekhoven and Van De Ruijtenbeek, Third International Conference on Structural Mechanics in Reactor Technology, London (1975) G4/7.

  13. M. Broekhoven, in Cracks and Fracture, ASTM STP 601 (1976) 535–558.

  14. R. Shah and A. Kobayashi, Engineering Fracture Mechanics, 3 (1971) 71–96.

    Google Scholar 

  15. A. Kobayashi et al., Fourth International Conference on Structural Mechanics in Reactor Technology, San Francisco (1977) G4/4.

  16. P. Besuner, L. Cohen and J. McLean, ibid., G4/5.

  17. M. Broekhoven, Rep. mmpp-157, Delft University of Technology, Netherlands, July (1976).

  18. R. Derby, Experimental Mechanics, 12 (1972) 580–584.

    Google Scholar 

  19. C. Smith, M. Jolles and W. Peters, Rep. VPI-E-76-25, Virginia Polytechnic Institute and State University, Nov. (1976).

  20. C. Ruiz, Strain, 9 (1973) 7–9.

    Google Scholar 

  21. G. Pearson and C. Ruiz, International Journal of Fracture, 13 (1977) 319–339.

    Google Scholar 

  22. S. Novack and J. Barsom, in Cracks and Fracture, ASTM STP 601 (1976) 409–447.

  23. S. Rolfe and J. Barsom, Fracture and Fatigue Control in Structures; Applications of Fracture Mechanics, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1977).

    Google Scholar 

  24. P. Paris and G. Sih, in Fracture Toughness Testing, ASTM STP 381 (1965) 30–83.

  25. S. Maddox, International Journal of Fracture, 11 (1965) 221–243.

    Google Scholar 

  26. G. Irwin, Journal of Applied Mechanics (1962) 651–654.

  27. A. Kobayashi and A. Enetanya, in Mechanics of Crack Growth, ASTM STP 590 (1976) 477–495.

  28. R. Thresher and F. Smith, Journal of Applied Mechanics, 39 (1972) 195–200.

    Google Scholar 

  29. D. Redekop and J. Schroeder, “Approximate Prediction of Hoop Stresses at Major Sections of Tee Intersections of Cylindrical Shells Subjected to Internal Pressure”, to appear in the Journal of Pressure Vessels Technology, Transactions of the ASME.

  30. A. Kobayashi et al., Journal of Engineering for Power, 98 (1976) 465–472.

    Google Scholar 

  31. P. Besuner and W. Caughey, EPRI NP-261, Electric Power Research Institute, Nov. (1976).

  32. W. Peirce, Journal of Society for Industrial and Applied Mathematics, 5 (1957) 66–73.

    Google Scholar 

  33. M.J. Broekhoven, Proceedings of the Third International Conference on Pressure Vessel Technology, 839–852.

  34. C. Smith, W. Peters and M. Jolles, ASME Paper 77-PVP-30.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed, M.A., Schroeder, J. Stress intensity factor solution for crotch-corner cracks of tee-intersections of cylindrical shells. Int J Fract 14, 605–621 (1978). https://doi.org/10.1007/BF00115999

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115999

Keywords

Navigation