Skip to main content
Log in

Weight function for circumferential semi-elliptical cracks in cylinders due to residual stress fields induced by welding

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A method is developed to evaluate the stress intensity factors (SIFs) for semi-elliptical circumferential cracks located at the inner wall of a pipe under arbitrary welding residual stress distribution. To accomplish this, at first, the three-dimensional finite element analysis (FEA) is performed employing singular elements along the crack front. Next, the weight function (WF) is incorporated in conjunction with the finite element results to predict the SIFs of semi-elliptical circumferential cracks in pipes. Then, the presented WF is extended to estimate the SIFs of fully circumferential cracks in pipes. Moreover, a closed-form formulation of SIFs is presented as a function of arbitrary loading condition and crack geometry. Finally, the closed-form relation has been used to predict the stress intensity factors of circumferential cracks under highly nonlinear residual stress fields. Comparison of the results and those in the literature shows an acceptable agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lin, X.B., Smith, R.A.: Fatigue growth prediction of internal surface cracks in pressure vessels. ASME J. Press. Vessel. Technol. 120, 17–23 (1998)

    Article  Google Scholar 

  2. Grebner, H., Strathmeier, U.: Stress intensity factors for circumferential semielliptical surface cracks in a pipe under thermal loading. Eng. Fract. Mech. 22, 1–7 (1985)

    Article  Google Scholar 

  3. Chen, X., You, Y.: Weight functions for multiple axial cracks in a coated hollow cylinder. Arch. Appl. Mech. (2014). doi:10.1007/s00419-014-0973-4

  4. Xian-Ming, K., Si-Tao, Z., Zhen-Yuan, C.: Studies on stress intensity factor of surface cracks in a cylinder under remote tension loads. Eng. Fract. Mech. 33, 105–111 (1989)

    Article  Google Scholar 

  5. Poette, C., Albaladejo, S.: Stress intensity factors and influence functions for circumferential surface cracks in pipes. Eng. Fract. Mech. 39, 641–650 (1991)

    Article  Google Scholar 

  6. Wallbrink, C.D., Peng, D., Jones, R.: Assessment of partly circumferential cracks in pipes. Int. J. Fract. 133, 167–181 (2005)

    Article  MATH  Google Scholar 

  7. Zahoor, A.: Closed form expressions for fracture mechanics analysis of cracked pipes. ASME J. Press. Vessel. Technol. 107, 203–205 (1985)

    Article  Google Scholar 

  8. Bergman, M.: Stress intensity factors for circumferential surface cracks in pipes. Fatigue Fract. Eng. Mater. Struct. 18, 1155–1172 (1995)

    Article  Google Scholar 

  9. Kumar, V., German, M.D., Schumacher, B.I.: Analysis of elastic surface cracks in cylinders using the line-spring model and shell finite element method. ASME J. Press. Vessel. Technol. 107(4), 403–411 (1985)

    Article  Google Scholar 

  10. El Hakimi, A., Le Grognec, P., Hariri, S.: Numerical and analytical study of severity of cracks in cylindrical and spherical shells. Eng. Fract. Mech. 75, 1027–1044 (2008)

    Article  Google Scholar 

  11. Kamaya, M., Nishioka, T.: Analysis of surface crack in cylinder by finite element alternating method. ASME J. Press. Vessel. Technol. 127(2), 165–172 (2005)

    Article  Google Scholar 

  12. Alipour, K., Nabavi, S.M., Rahimi, F.: Local thermal stress intensity factors for an axial semi-elliptical crack in a hollow cylinder using the finite element method. Strength Fract. Complex. 8, 167–178 (2014)

    Google Scholar 

  13. Kamaya, M.: A combination rule for circumferential surface cracks on pipe under tension based on limit load analysis. ASME J. Press. Vessel. Technol. 133(2), 021205-1-7 (2011)

    Article  Google Scholar 

  14. API 579–1/ASME FFS-1: Fitness-for-service, 2nd edn. American Petroleum Institute, Washington DC (2007)

  15. Miyazaki, K., Mochizuki, M.: The effects of residual stress distribution and component geometry on the stress intensity factor of surface cracks. ASME J. Press. Vessel. Technol. 133(2), 011701-1-7 (2011)

    Google Scholar 

  16. Scarth, D.A., Xu, S.X.: Universal weight function consistent method to fit polynomial stress distribution for calculation of stress intensity factor. ASME J. Press. Vessel. Technol. 134(6), 061204-1-11 (2012)

    Article  Google Scholar 

  17. Li, Y., Hasegawa, K., Xu, S.X., Scarth, D.A.: Weight function method with segment-wise polynomial interpolation to calculate stress intensity factors for complicated stress distributions. ASME J. Press. Vessel. Technol. 136(2), 021202-1-10 (2014)

    Article  Google Scholar 

  18. Oh, C.Y., Kim, Y.J., Oh, Y.J., Kim, J.S., Song, T.K., Kim, Y.B.: Evaluation of stress intensity factors due to welding residual stresses for circumferential cracked pipes. Int. J. Press. Vessel. Pip. 105, 36–48 (2013)

    Article  Google Scholar 

  19. Katsuyama, J., Tobita, T., Itoh, H., Onizawa, K.: Effect of welding conditions on residual stress and stress corrosion cracking behavior at butt-welding joints of stainless steel pipes. ASME J. Press. Vessel. Technol. 134(2), 021403-1-9 (2012)

    Article  Google Scholar 

  20. Huh, N.S.: Elastic t stress estimates for circumferential surface-cracked cylinders. Fatigue Fatigue Fract. Eng. Mater. Struct. 29, 57–69 (2006)

    Article  Google Scholar 

  21. Kim, Y.J., Kim, J.S., Lee, Y.Z., Kim, Y.J.: Non-linear fracture mechanics analyses of part circumferential surface cracked pipes. Int. J. Fract. 116, 347–375 (2002)

    Article  Google Scholar 

  22. Cho, D.H., Woo, S.W., Chang, Y.S., Choi, J.B., Kim, Y.J., Jhung, M.J., Choi, Y.H.: Enhancement of j estimation for typical nuclear pipes with a circumferential surface crack under tensile load. J. Mech. Sci. Technol. 24(3), 681–686 (2010)

    Article  Google Scholar 

  23. Cho, D.H., Seo, H.B., Kim, Y.J., Chang, Y.S., Jhung, M.J., Choi, Y.H.: Advances in j-integral estimation of circumferentially surface cracked pipes. Fatigue Fatigue Fract. Eng. Mater. Struct. 34, 667–681 (2011)

    Article  Google Scholar 

  24. Mettu, S.R., Forman, R.G.: Analysis of circumferential cracks in circular cylinders using the weight-function method. In: Chona R (ed.) Fracture mechanics, twenty-third symposium, ASTM STP 1189, pp. 417–440. American Society for Testing and Materials, Philadelphia (1993)

  25. Varfolomeyev, I.V., Petersilge, M., Busch, M.: Stress intensity factors for internal circumferential cracks in thin- and thick-walled cylinders. Eng. Fract. Mech. 60, 491–500 (1998)

    Article  Google Scholar 

  26. Nabavi, S.M., Ghajar, R.: Analysis of thermal stress intensity factors for cracked cylinders using weight function method. Int. J. Eng. Sci. 48, 1811–1823 (2010)

    Article  MATH  Google Scholar 

  27. Ghajar, R., Nabavi, S.M.: Closed-form thermal stress intensity factors for an internal circumferential crack in a thick-walled cylinder. Fatigue Fract. Eng. Mater. Struct. 33(8), 504–512 (2010)

    Article  Google Scholar 

  28. Nabavi, S.M., Kamyab, M.: Determination of transient thermal stress intensity factors for circumferential cracks in cylinders. In: Proceedings of the 20th ISME Mechanical Engineering Conference, Shiraz University, Shiraz, paper no. 2219, 15–17 May (2012)

  29. ABAQUS: User’s manual, version 6.12, Dassault Systèmes Inc., USA (2012)

  30. Bueckner, H.F.: A novel principle for the computation of stress intensity factors. J. Appl. Math. Mech. 50(9), 529–546 (1970)

    MathSciNet  MATH  Google Scholar 

  31. Rice, J.R.: Some remarks on elastic crack-tip stress fields. Int. J. Solids Struct. 8, 751–758 (1972)

    Article  MATH  Google Scholar 

  32. Peteoski, H.J., Achenbach, J.D.: Computation of the weight function from a stress intensity factor. Eng. Fract. Mech. 10, 257–266 (1978)

    Article  Google Scholar 

  33. Shen, G., Glinka, G.: Weight function for a surface semi-elliptical crack in a finite thickness plate. Theor. Appl. Fract. Mech. 15, 247–255 (1991)

    Article  Google Scholar 

  34. Nabavi, S.M., Azad, R.: The effect of term numbers of a weight function on the accuracy of stress intensity factors in a cracked cylinder. In: Proceedings of the 20th ISME Mechanical Engineering Conference, Shiraz University, Shiraz, Iran, paper no. 1919, 15–17 May (2012)

  35. Fett, T., Mattheck, C., Munz, D.: On the calculation of crack opening displacement from the stress intensity factor. Eng. Fract. Mech. 27, 697–715 (1987)

    Article  Google Scholar 

  36. Newman, Jr, Raju, I.S.: Stress intensity factor equations for cracks in three-dimensional finite bodies. Technical Report No. 85793, NASA Langley Research Center, USA (1984)

  37. Spiegel, M.R.: Mathematical Handbook of Formulas and Tables. Mc-Graw Hill, New York (1968)

    Google Scholar 

  38. Laham, S.: Stress Intensity Factors and Limit Load Handbooks. British Energy Generation Ltd., The United Kingdom (1999)

    Google Scholar 

  39. Mochizuki, M., Hattori, T., Nakakado, K.: Residual stress reduction and fatigue strength improvement by controlling welding pass sequences. ASME J. Eng. Mater. Technol. 122(1), 108–112 (2000)

    Article  Google Scholar 

  40. Mochizuki, M., Hayashi, M., Hattori, T.: Residual stress distribution depending on welding sequence in multi-pass welded joints with x-shaped groove. ASME J. Press. Vessel. Technol. 122(1), 27–32 (2000)

    Article  Google Scholar 

  41. Dong, P., Burst, F.: Welding residual stresses and effects on fracture in pressure vessels and piping components: a millennium review and beyond. ASME J. Press. Vessel. Technol. 122(3), 329–338 (2000)

    Article  Google Scholar 

  42. ASME section IX: ASME boiler and pressure vessel code (BPVC) (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Nabavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zareei, A., Nabavi, S.M. Weight function for circumferential semi-elliptical cracks in cylinders due to residual stress fields induced by welding. Arch Appl Mech 86, 1219–1230 (2016). https://doi.org/10.1007/s00419-015-1087-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1087-3

Keywords

Navigation