Skip to main content
Log in

DNA amounts and chromatin compactness in Vicia

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

2C DNA amounts and areas of chromatin were determined with a M 86 Vickers microdensitometer in 56 species of Vicia (x=5, 6, 7), exhibiting large differences in chromosome size. There were significant differences between the species both in DNA content and chromatin area. The nuclear DNA amounts range from 3.85 to 27.07 pg. DNA distribution appears discontinuous; species cluster into distinct groups and the average nuclear DNA amount separating each successive pair is approximately the same (2.23 pg). The compaction of DNA in interphase nuclei increases with increasing DNA amount, which is, at least partly, due to a disproportionate increase in the heterochromatin relative to the euchromatin component of DNA. Comparisons of DNA readings at various stages of the cell cycle show that the DNA amounts are underestimated by microdensitometry in nuclei with high DNA density. Estimation of relative DNA content and area of individual chromosomes were made in twelve species. The results show that changes in DNA content within chromosomes affect the degree of metaphase coiling in an orderly fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allfrey, V. G., Littau, V. C. & Mirsky, A. E., 1963. On the role of histones in regulating ribonucleic acid synthesis in the cell nucleus. Proc. natn. Acad. Sci. US 49: 414–421.

    Google Scholar 

  • Ayonoadu, U. W. U., 1974. Nuclear DNA variation in Phaseolus. Chromosoma 48: 41–49.

    Google Scholar 

  • Barlow, P. W., 1977. Determinants of nuclear chromatin structure in angiosperms. Ann. Sci. nat. bot. biol. veg., Ser. 18: 193–206.

    Google Scholar 

  • Barlow, P. W. & Vosa, C. G., 1969. The chromosomes of Puschkinia libanotica during mitosis. Chromosoma 27: 436–447.

    Google Scholar 

  • Bennett, M. D., Smith, J. B., Ward, J. P. & Finch, R. A., 1982. The relationship between chromosome volume and DNA content in unsquashed metaphase cells of Barley, Hordeum vulgare cv. Tuleen 346. J. Cell Sci. 56: 101–111.

    Google Scholar 

  • Bennett, M. D. & Smith, J. B., 1976. Nuclear DNA amounts in angiosperms. Phil. Trans. R. Soc. B 274: 227–274.

    Google Scholar 

  • Derenzini, M., Lorenzoni, E., Marinozzi, V. & Barsotti, P., 1977. Ultrastructural cytochemistry of active chromatin in regenerating rat hepatocytes. J. Ultrastr. Res. 59: 250–262.

    Google Scholar 

  • Derenzini, M., Novello, F. & Pession-Brizzi, A., 1978. Perichromatin fibrils and chromatin ultrastructural pattern. Expl Cell Res. 112: 443–454.

    Google Scholar 

  • Flavell, R. B., Bennett, M. D., Smith, J. B. & Smith, D. B., 1974. Genome size and proportion of repeated sequence DNA in plants. Biochem. Genet. 12: 257–269.

    Google Scholar 

  • Fox, D. P., 1972. DNA content of related species. Chromosomes Today 3: 32–38.

    Google Scholar 

  • Gupta, P. K., 1976. Nuclear DNA, nuclear area and nuclear dry mass in thirteen species of Crotalaria (Angiospermac, Leguminosae). Chromosoma 54: 155–164.

    Google Scholar 

  • Hencen, W. K. & Caspersson, T., 1973. Identification of the chromosomes of rye by distribution patterns of DNA. Hereditas 74: 259–272.

    Google Scholar 

  • Hsu, T. C., 1962. Differential rate in RNA synthesis between cuchromatin and heterochromatin. Expl Cell Res. 27: 332–334.

    Google Scholar 

  • Hutchinson, J., Narayan, R. K. J. & Rees, H., 1980. Constraints upon the composition of supplementary DNA. Chromosoma 78: 137–145.

    Google Scholar 

  • Jones, R. N. & Rees, H., 1968. Nuclear DNA variation in Allium. Heredity 23: 591–605.

    Google Scholar 

  • Keyl, H. G., 1964. Verdopplung des DNA-Gehalts kleiner Chromosomenabschnitte als Faktor der Evolution. Naturwissenschaften 51: 46–47.

    Google Scholar 

  • Keyl, H. G., 1965. A demonstrable local and geomctric increase in the chromosomal DNA of Chironomus. Experientia 21: 191.

    Google Scholar 

  • Martin, P. G. & Shanks, R., 1966. Does Vicia faba have multistranded chromosomes? Nature 211: 650–651.

    Google Scholar 

  • McLeish, J. & Sunderland, N., 1961. Measurements of deoxyribosenucleic acid (DNA) in higher plants by Feulgen photometry and chemical methods. Expl Cell Res. 24: 527–540.

    Google Scholar 

  • Mittwoch, U., 1969. Scope and limitations of Feulgen microdensitometry. Chromosomes Today 2: 90–98.

    Google Scholar 

  • Mizuno, S. & Macgregor, H. C., 1974. Chromosomes, DNA sequences, and evolution in salamanders of the genus Plethodon. Chromosoma. 48: 239–296.

    Google Scholar 

  • Nagl, W., 1979. Nuclear ultrastructure: condensed chromatin in plants is species-specific (karyotypical), but not tissue-specific (functional). Protoplasma 100: 53–71.

    Google Scholar 

  • Nagl, W., 1980. Species and hybrid diagnosis in plants by means of quantitative light and electron microscopic morphometry of chromatin texture. Microsc. Acta Suppl. 4: 19–25.

    Google Scholar 

  • Nagl, W., 1982. Condensed chromatin: species specificity, tissue specificity and cell cycle-specificity, as monitored by scanning cytometry. In: Cell Growth, Plenum Press, New York: 171–218.

    Google Scholar 

  • Nagl, W. & Fusenig, H. P., 1979. Types of chromatin organization in plant nuclei. In: W., Nagl, V., Hemleben, F., Ehrendorfer (eds) Genome arid chromatin: organization, evolution, function. Springer, Vienna, New York: 221–233.

    Google Scholar 

  • Narayan, R. K. J., 1982. Discontinuous DNA variation in the evolution of plant species. The genus Lathyrus. Evolution 36: 877–891.

    Google Scholar 

  • Narayan, R. K. J., Ramachandran, C. & Raina, S. N., 1985. The distribution of satellite DNA in the chromosome complements of Vicia species (Leguminosae). Genetica 66: 115–121.

    Google Scholar 

  • Narayan, R. K. J. & Rees, H., 1976. Nuclear DNA variation in Lathyrus. Chromosoma 54: 141–154.

    Google Scholar 

  • Nishikawa, K., 1970. DNA content of the individual chromosomes and genomes in wheat and its relatives. Rep. Kihara Inst. biol. Res. 22: 57–65.

    Google Scholar 

  • Paroda, R. S. & Rees, H., 1971. Nuclear DNA variation in Eu-Sorghums. Chromosoma 32: 353–363.

    Google Scholar 

  • Raina, S. N. & Nayaran, R. K. J., 1984. Changes in DNA composition in the evolution of Vicia species. Theor. appl. Genet. 68: 187–192.

    Google Scholar 

  • Raina, S. N. & Rees, H., 1983a. DNA variation between and within chromosome complements of Vicia species. Heredity 51: 335–346.

    Google Scholar 

  • Raina, S. N. & Rees, H., 1983b. Variation in chromosomal DNA associated with the evolution of Vicia species. Kew Chromosomc Conference 2. Allen & Unwin, London: p. 360.

    Google Scholar 

  • Raina, S. N., Srivastav, P. K. & Rama Rao, S., 1986. Nuclear DNA variation in Tephrosia. Genetica 69: 27–33.

    Google Scholar 

  • Rees, H., Cameron, R. F., Jones, G. H. & Hazarika, M. H., 1966. Nuclear variation between diploid Angiosperms. Nature 211: 828–830.

    Google Scholar 

  • Rees, H. & Jones, G. H., 1967. Chromosome evolution in Lolium. Heredity 22: 1–18.

    Google Scholar 

  • Rees, H. & Jones, R. N., 1972. The origin of the wide species variation in nuclear DNA amount. Int. Rev. Cytol. 32: 53–92.

    Google Scholar 

  • Rees, H. & Narayan, R. K. J., 1977. Evolutionary DNA variation in Lathyrus. Chromosomes Today 6: 131–139.

    Google Scholar 

  • Rothfels, K., Sexsmith, E., Heimburger, M. & Krause, M. O., 1966. Chromosome size and DNA content of species of Anemone L. and related genera (Ranunculaceae). Chromosoma 20: 54–74.

    Google Scholar 

  • Sadasivaiah, R. S. & Magoon, M. L., 1965. Cytological and morphological studies of some species and species hybrids in the genus Sorghum. Canad. J. Genet. Cytol. 7: 591–608.

    Google Scholar 

  • Schmalenberger, B. & Nagl, W., 1979. Different DNA content chromatin condensation and transcription activity in retina cell nuclei of the guinea-pig. In: W., Nagl, V., Hemleben, F., Ehrendorfer (eds), Genome and chromatin: organization, evolution, function. Springer, Wien, New York: pp. 119–125.

    Google Scholar 

  • Seal, A. & Rees, H., 1982. The distribution of quantitative DNA changes associated with the evolution of diploid Festuceae. Heredity 47: 179–190.

    Google Scholar 

  • Setterfield, G., Sheinin, R., Dardick, I., Kiss, G. & Dubsky, M., 1978. Structure of interphase nuclei in relation to the cell cycle. J. Cell Biol. 77: 246–264.

    Google Scholar 

  • Sparrow, A. H. & Nauman, A. F., 1973. Evolutionary changes in genome and chromosome sizes and in DNA content in the grasses. Brookhaven Symp. Biol. 25: 367–389.

    Google Scholar 

  • Sunderland, N. & McLeish, J., 1961. Nucleic acid content and concentration in root cells of higher plants. Expl. Cell Res. 24: 541–554.

    Google Scholar 

  • Sybenga, J., 1972. General cytogenetics. North-Holland Publ. Co., Amsterdam.

    Google Scholar 

  • Verma, S. C. & Rees, H., 1974. Nuclear DNA and the evolution of allotetraploid Brassicae. Heredity 33: 61–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raina, S.N., Bisht, M.S. DNA amounts and chromatin compactness in Vicia . Genetica 77, 65–77 (1988). https://doi.org/10.1007/BF00058550

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00058550

Keywords

Navigation