Skip to main content
Log in

The conceptual physical framework of stochastic fracture kinetics

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Physically based, rational, constitutive laws are developed by analysis or synthesis: the second represents the maturity of deformation and fracture science. The basic processes are thermally activated discrete steps, each controlled by the elementary rate constant derived rigorously by rate theory considerations of statistical mechanics. the rate constants are combined by the laws of kinetics, leading to the constitutive relations which express the rate of the process as a function of the applied load, component geometry, temperature, and microstructure. The physical process is stochastic and the appropriate mathematics is expressed by the Markov chain or by the Fokker-Planck transport differential equation: both are the appropriate forms of the random walk process. The constitutive laws can lead to direct engineering applications and have critical significance at the threshold conditions.

Résumé

L'analyse ou la synthèse constituent deux voies pour développer des lois constitutives, rationnelles et basées sur la Physique. La seconde voie est représentative de la maturité de la science des déformations et de la rupture. Les processus fondamentaux relèvent d'étapes discrètes activées par effet thermique, chacune étant contrôlée par une constante de vitesse élémentaire, déduite de considérations sur la théorie de la vitesse en mécanique statistique. Combinées aux lois de la cinétique, les constantes de vitesse conduisent aux expressions constitutives de la vitesse d'un processus en fonction de la charge appliquée, de la géométrie du composant, de la température et de la microstructure. Le processus physique a un caractère stochastique et son expression mathématique est obtenue par une chaîne de Markov ou par une équation différentielle de transfert de Fokker-Planck. Ces deux approches sont les formes adéquates pour un processus itératif aléatoire. Les lois constitutives peuvent mener à des applications directes en construction, et ont une signification critique aux conditions limites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Arrhenius, Zeitschrift für Physikalische Chemie 4 (1889) 226.

    Google Scholar 

  2. S. Glasstone, K.J. Laidler and H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York, (1941).

    Google Scholar 

  3. A.S. Krausz and H. Eyring, Deformation Kinetics, Wiley-Interscience, New York (1975).

    Google Scholar 

  4. P. Ludwik, Elemente der Technologischen Mechanik, Springer, Berlin (1909).

    Google Scholar 

  5. A. Nadai, Theory of Flow and Fracture of Solids, McGraw-Hill, New York (1950).

    Google Scholar 

  6. A.S. Krausz and K. Krausz, Fracture Kinetics of Crack Growth, Kluwer Academic, Dordrecht (1988).

    Google Scholar 

  7. A.S. Krausz, Engineering Fracture Mechanics 12 (1979) 499–504.

    Google Scholar 

  8. S. Chandrasekhar, Reviews of Modern Physics, 15 (1943) 1–89.

    Google Scholar 

  9. A.S. Krausz and K. Krausz, International Journal of Engineering Science 22 (1984) 1075–1081.

    Google Scholar 

  10. A.S. Krausz, K. Krausz, and D.-S. Necsulescu, in Proceedings of the International Conference on Numerical Methods for Non-Linear Problems, Vol. 2, Pineridge Press, Swansea, U.K. (1984).

    Google Scholar 

  11. A. S. Krausz and K. Krausz, in Proceedings of the ASTM 20th National Symposium on Fracture Mechanics: Perspectives and Directions, Lehigh University (1987) STP publication in press.

  12. A.S. Krausz, K. Krausz, and D.-S. Necsulescu, Zeitschrift für Naturforschung 38a (1983) 497–502.

    Google Scholar 

  13. A.S. Krausz and K. Krausz, Transactions ASME, Journal of Mechanical Design, Special Issue 104 (1982) 666–670.

    Google Scholar 

  14. W.C. Elmore and M.A. Heald, in Physics of Waves, Dover, New York (1985) 45.

    Google Scholar 

  15. A.S. Krausz, J. Mshana, and K. Krausz, Engineering Fracture Mechanics 13 (1980) 759–766.

    Google Scholar 

  16. A.S. Krausz, International Journal of Fracture 12 (1976) 239–242.

    Google Scholar 

  17. A.S. Krausz and K. Krausz, in Materials Science Monographs, 38B, Proceedings of the World Congress on High Tech Ceramics, P. Vicenzini (ed), Elsevier, Amsterdam (1987) 1239–1245.

    Google Scholar 

  18. E.C.W. Perryman, Nuclear Engineering 17 (1978) 95–105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krausz, A.S., Krausz, K. The conceptual physical framework of stochastic fracture kinetics. Int J Fract 39, 111–120 (1989). https://doi.org/10.1007/BF00047444

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047444

Keywords

Navigation