Skip to main content
Log in

Decomposition in salt marsh ecosystems of the S.W. Netherlands: the effects of biotic and abiotic factors

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

Decomposition rates, determined with the litterbag technique in salt marshes of the S.W. Netherlands during the past decade are compared; the biotic and abiotic factors influencing these rates are identified and discussed.

Tissue composition is the main variable affecting decay rates of halophytes, particularly variations in lignin content between plant parts and between species.

Experiments in which the loss of the tensile strength of cotton strips was used as an index of cellulolytic decay, show that there is a conspicuous variation in decay rates on different sites in a salt marsh. Nonetheless, the locally varying environmental conditions within salt marshes of the S.W. Netherlands have less impact on the variation in decomposition rates of halophyte litter than the chemical make-up of the plant material.

Larger fauna elements (> 300 μm) may increase decomposition rates, but this effect is only limited and depends on location and litter type. The role of small fauna elements such as nematodes, which occur abundantly in association with halophyte litter, remains largely unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, B. I. & Mitchell, M. J. 1980. Role of nematode-bacterial interactions in heterotrophic systems with emphasis on sewage sludge decomposition. Oikos 35: 404–440.

    Google Scholar 

  • Ambrose, W. R. 1980. Monitoring long-term temperature and humidity. Bull. Inst. Conserv. Cult. Mater. 6: 36–42.

    Google Scholar 

  • Armstrong, W., Wright, E. J., Lythe, S. & Gaynard, T. J. 1980. Plant zonation and the effects of the spring-neap tidal cycle on soil aeration in a Humber salt marsh. J. Ecol. 73: 323–339.

    Google Scholar 

  • Beeftink, W. G. 1977. The coastal salt marshes of Western and Northern Europe: an ecological and phytosociological approach. In: Chapman, V. J. (ed.) Wet coastal ecosystems. Elseviers, Amsterdam, p. 109–155.

    Google Scholar 

  • Buth, G. J. C. 1987. Decomposition of roots of three plant communities in a Dutch salt marsh. Aquat. Bot. 29: 123–138.

    Google Scholar 

  • Buth, G. J. C., Verdonschot, P. F. M. & DeWolf, L. 1982. Decomposition of three halophytes in different habitats of an Eastern Scheldt salt marsh. Hydrobiol. Bull. 16: 103–112.

    Google Scholar 

  • Buth, G. J. C. & Voesenek, L. A. C. J. 1987. Decomposition of standing and fallen litter of halophytes in a Dutch salt marsh. In: Huiskes, A. H. L., Blom, C. W. P. M. & Rozema, J. (eds.) Vegetation between land and sea. Junk, Dordrecht, p. 146–162.

    Google Scholar 

  • Buth, G. J. C. & Voesenek, L. A. C. J. 1988. Respiration of standing and fallen plant litter in a Dutch salt marsh. In: Verhoeven, J. T. A., Heil, G. W. & Werger, M. J. A. (Eds.) Vegetation structure in relation to carbon and nutrient economy. SPB Academic Publ., Den Haag, p. 51–60.

    Google Scholar 

  • Buth, G. J. C. & DeWolf, L. 1985. Decomposition of Spartina anglica, Elytrigia pungens and Halimione portulacoides in a Dutch salt marsh in association with faunal and habitat influences. Vegetatio: 62: 337–355.

    Google Scholar 

  • Christian, R. R. 1984. A life-table approach to decomposition studies. Ecology 65: 1693–1697.

    Google Scholar 

  • Clarholm, M. 1985. Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil. Biol. Biochem. 17: 181–187.

    Google Scholar 

  • Coull, B. C. & Bell, S. S. 1979. Perspectives of marine meiofaunal ecology. In: R. J.Livingstone (Ed.). Ecological Processes in Coastal and Marine Systems. Plenum Press, New York, p. 189–216.

    Google Scholar 

  • Cowling, E. B. & Brown, W. 1969. Structural features of cellulosic materials in relation to enzymatic hydrolysis. In: Hajny, G. J., Reese, E. T. (Ed.). Cellulases and their applications. Adv. Chem. Ser. Publ. No. 95, Amer. Chem. Soc., Washington, DC.

    Google Scholar 

  • De laCruz, A. A. & Hackney, C. T. 1977. Energy value, elemental composition, and productivity of below-ground biomass of a Juncus tidal marsh. Ecology 58: 1165–1170.

    Google Scholar 

  • Findlay, S. & Tenore, K. 1982. Effect of a free-living marine nematode (Diplolaimella chitwoodie) on detrital carbon mineralization. Mar. Ecol. Prog. Ser. 8: 161–166.

    Google Scholar 

  • French, D. O. 1988. Some effects of changing soil chemistry on decomposition of plant litter and cellulose on a Scottish moor. Oecologia 75: 608–618.

    Google Scholar 

  • Gallagher, J. L. & Plumley, F. G. 1979. Underground biomass profiles and productivity in Atlantic coastal marshes. Am. J. Bot. 66: 156–161.

    Google Scholar 

  • Gallagher, J. L., Kibby, H. V. & Skirvin, K. W. 1984. Community respiration of decomposing plants in Oregon Estuarine Marshes. Est. coastal Sh. Sci. 18: 421–431.

    Google Scholar 

  • Hackney, C. T. 1987. Factors affecting accumulation or loss of macroorganic matter in salt marsh sediments. Ecology 68: 1109–1113.

    Google Scholar 

  • Harvey, P. J., Schoemaker, H. E. & Palmer, J. M. 1987. Lignin degradation by white rot fungi. Plant, Cell Environm. 10: 709–714.

    Google Scholar 

  • Hemminga, M. A., Kok, C. J. & DeMunck, W. 1988. Decomposition of Spartina anglica roots and rhizomes in a salt marsh of the Westerschelde estuary. Mar. Ecol. Prog. Ser. 48: 175–184.

    Google Scholar 

  • Gildrew, A. G., Townsend, C. R., Francis, J. & Fench, K. 1984. Cellulolytic decomposition in streams of contrasting pH and its relationship with invertebrate community structure. Freshw. Biol. 14: 323–328.

    Google Scholar 

  • Hill, M. O., Latter, P. M. & Bancroft, G. 1985. A standard curve for intersite comparison of cellulose degradation using the cottong strip method. Can. J. Soil. Sci. 65: 609–619.

    Google Scholar 

  • Kemp, P. F., Newell, S. Y. & Hopkinson, C. S. 1990. Importance of grazing on the salt-marsh grass Spartina alterniflora to nitrogen turnover in a macrofaunal consumer, Littorina irrorata, and to decomposition of standing-dead Spartina. Mar. Biol. 104: 311–319.

    Google Scholar 

  • Livingstone, D. C. & Patriquin, D. G. 1981. Belowground growth of Spartina alterniflora Loisel: Habitats, functional biomass and non-structural carbohydrates. Est. coastal. Shelf Sci. 12: 579–587.

    Google Scholar 

  • Lopez, G. R., Levinton, J. S. & Slobodkin, L. B. 1977. The effect of grazing by the detritivore Orchestia grillus on Spartina litter and its associated microbial community. Oecologia 30: 111–127.

    Google Scholar 

  • Lynch, J. M. 1976. Products of soil microorganisms in relation to plant growth. Crit. Rev. Microbiol. 5: 67–107.

    Google Scholar 

  • Marinucci, A. C., Hobbie, J. E. & Helfrich, J. V. K. 1983. Effect of litter nitrogen on decomposition and microbial biomass in Spartina alterniflora. Microbiol. Ecol. 9: 27–40.

    Google Scholar 

  • Newell, S. Y., Fallon, R. D., Rodriguez, R. M. C. & Groene, L. C. 1985. Influence of rain, tidal wetting and relative humidity on release of carbon dioxide by standing-dead salt-marsh plants. Oecologia 68: 73–79.

    Google Scholar 

  • Reice, S. R. & Stiven, A. E. 1983. Environmental patchiness, litter decomposition and associated faunal patterns in a Spartina alterniflora marsh. Est. coast. Shelf. Sci. 16: 559–571.

    Google Scholar 

  • Reimold, R. J. 1977. Mangals and salt marshes of Eastern United States. In: Chapman, V. J. (Ed.) Wet coastal ecosystems. Elseviers, Amsterdam, p. 157–166.

    Google Scholar 

  • Smith, K. K., Good, R. E. & Wood, N. F. 1979. Production dynamics for above and below ground components of a New Jersey Spartina alterniflora tidal marsh. Est. coast. mar. Sci. 9: 189–201.

    Google Scholar 

  • Swift, M. J., Heal, O. W. & Anderson, J. M. 1979. Decomposition in terrestrial ecosystems. Blackwell, Oxford.

    Google Scholar 

  • Valiela, I., Teal, J. M., Allen, S. E., VanEtten, R., Goehringer, D. & Volkman, S. 1985. Decomposition in salt marsh ecosystems: the phases and major factors affecting disappearance of above-ground organic matter. J. exp. mar. Biol. Ecol. 89: 29–54.

    Google Scholar 

  • White, D. A. & Trapani, J. M. 1982. Factors influencing disappearance of Spartina alterniflora from litterbags. Ecology 63: 242–245.

    Google Scholar 

  • Wieser, W. 1959. Fee-living nematodes. IV. General part. Reports of the Lund University expedition 1948–1949. Lunds Universiteits Arsskrift. N.F. 2.55,5 Hakan Ohlssons, Lund, p. 68–85.

    Google Scholar 

  • Wilson, J. O., Buchsbaum, R., Valiela, I. & Swain, T. 1986a. Decomposition in salt marsh ecosystems: phenolic dynamics during decay of litter of Spartina alterniflora. Mar. Ecol. Prog. Ser. 29: 177–187.

    Google Scholar 

  • Wilson, J. O., Valiela, I. & Swain, T. 1986b. Carbohydrate dynamics during decay of litter of Spartina alterniflora. Mar. Biol. 92: 277–284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemminga, M.A., Buth, G.J.C. Decomposition in salt marsh ecosystems of the S.W. Netherlands: the effects of biotic and abiotic factors. Vegetatio 92, 73–83 (1991). https://doi.org/10.1007/BF00047133

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047133

Keywords

Navigation