Skip to main content
Log in

Mesh size and site effects on leaf litter decomposition in a side arm of the River Danube on the Gemenc floodplain (Danube-Dráva National Park, Hungary)

  • WETLANDS BIODIVERSITY AND PROCESSES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In forested floodplain ecosystems, leaf litter represents an important energy source for aquatic organisms, and its decomposition is a key ecosystem process. In this paper, we investigate the decomposition dynamics of Salix alba, Populus hybrids in the depositional zone of a side arm of the River Danube, and of Fraxinus angustifolia, Ulmus laevis, Quercus robur in the erosional zone. To estimate the effect of small-sized invertebrates, we used litter bags with two mesh sizes (0.04 and 1 mm), and to evaluate the site effects the F. angustifolia leaves were exposed in both sites. Willow and poplar leaf litter decomposed at an intermediate rate; ash and elm decomposed quickly, and the oak decomposed slowly. The faunal exclusion experiments revealed the importance of Chironomidae larvae, which formed the dominant macroinvertebrate taxon in the medium-mesh bags. The initial quality of the leaf litter, especially the N:P ratio, affected the activity of microorganisms, the density of chironomids, and was positively correlated with the breakdown rates. The site conditions had a significant effect on the decay rate and nutrient dynamics. We concluded that the leaf litter decomposition processes and the associated nutrient dynamics are affected by nutrient availability, consumer activity and site conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ágoston-Szabó, E., M. Dinka, L. Némedi & G. Horváth, 2006. Decomposition of Phragmites australis rhizome in a shallow lake. Aquatic Botany 85: 309–316.

    Article  Google Scholar 

  • Ágoston-Szabó, E., K. Schöll & M. Dinka, 2013. Limnological characteristics of a Danube oxbow-lake (Danube-Dráva National Park, Hungary). River Systems 20(3–4): 277–287.

    Article  Google Scholar 

  • Ágoston-Szabó, E., K. Schöll, A. Kiss, A. Berczik & M. Dinka, 2014. Decomposition of willow leaf litter in an Oxbow Lake of the Danube River at Gemenc, Hungary. Acta Zoologica Bulgarica 7: 197–202.

    Google Scholar 

  • Andersen, D. C. & S. M. Nelson, 2006. Flood pattern and weather determine Populus leaf litter breakdown and nitrogen dynamics on a cold desert floodplain. Journal of Arid Environments 64(4): 626–650.

    Article  Google Scholar 

  • Armitage, P. D., P. S. Cranston & L. C. V. Pinder, 1995. In Armitage, P., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: Biology and Ecology of Non-biting Midges. Chapmann & Hall, New York: 1–572.

    Chapter  Google Scholar 

  • Baldy, V., M. O. Gessner & E. Chauvet, 1995. Bacteria, fungi and breakdown of leaf litter in a large river. Oikos 74: 93–102.

    Article  Google Scholar 

  • Bärlocher, F., 1992. Effects of drying and freezing autumn leaves on leaching and colonization by aquatic hyphomycetes. Freshwater Biology 28: 1–7.

    Article  Google Scholar 

  • Bärlocher, F., C. Canhoto & M. A. S. Graça, 1995. Fungal colonization of alder and eucalypt leaves in two streams in Central Portugal. Archiv für Hydrobiologie 133: 457–470.

    Google Scholar 

  • Berg, B. & C. McClaugherty, 2008. Plant litter: decomposition, humus formation, carbon sequestration, 2nd ed. Springer, Berlin: 1–338.

    Book  Google Scholar 

  • Bokhorst, S. & D. A. Wardle, 2013. Microclimate within litter bags of different mesh size: implication for the ‘arthropod effect’ on litter decomposition. Soil Biology and Biochemistry 58: 147–152.

    Article  CAS  Google Scholar 

  • Bradford, M. A., G. M. Tordoff, T. Eggers, T. H. Jones & J. E. Newington, 2002. Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos 99: 317–323.

    Article  Google Scholar 

  • Brennan, A., A. J. Mc Lachlan & R. S. Wotton, 1978. Particle size and midge larvae (Chironomidae: Diptera) in an upland river. Hydrobiologia 59: 67–73.

    Article  Google Scholar 

  • Callisto, M., J. F. Gonçalves Jr & M. A. S. Graça, 2007. Leaf litter as a possible food source for chironomids (Diptera) in Brazilian and Portuguese headwater streams. Revista Brasileira de Zoologia 24(2): 442–448.

    Article  Google Scholar 

  • Casas, J. J., C. Zamora-Munoz, F. Archila & J. Alba-Tercedor, 2000. The effect of a headwater dam on the use of leaf bags by invertebrate communities. Regulated Rivers: Research and Management 16: 577–591.

    Article  Google Scholar 

  • Chauvet, E., 1987. Changes in chemical composition of alder, poplar and willow leaves during decomposition in a river. Hydrobiologia 148: 35–44.

    Article  CAS  Google Scholar 

  • Chauvet, E., 1997. The leaf litter decomposition in large rivers: the case of the River Garronne. Limnetica 13(2): 65–70.

    Google Scholar 

  • Chauvet, E. & H. Décamps, 1989. Lateral interactions in a fluvial landscape: the River Garonne, France. Journal of North American Benthological Society 8: 9–17.

    Article  Google Scholar 

  • Cheever, B. M. & J. Webster, 2014. Effects of consumers and nitrogen availability on heterotrophic microbial activity during leaf decomposition in headwater streams. Freshwater Biology 59: 1768–1780.

    Article  CAS  Google Scholar 

  • Chergui, H. & E. Pattee, 1990. The processing of leaves of trees and aquatic macrophytes in the network of the River Rhone. Internationale Revue der gesamten Hydrobiologie und Hydrographie 75: 281–302.

    Article  Google Scholar 

  • Elser, J. J., K. Acharya, M. Kyle, J. Cotner, W. Makino, T. Markow, T. Watts, S. E. Hobbie, W. Fagan, J. Schade, J. Hood & R. W. Sterner, 2003. Growth rate-stoichiometry couplings in diverse biota. Ecology Letters 6: 936–943.

    Article  Google Scholar 

  • Evans-White, M. A., R. S. Stelzer & G. A. Lamberti, 2005. Taxonomic and regional patterns in benthic macroinvertebrate elemental composition in streams. Freshwater Biology 50: 1786–1799.

    Article  CAS  Google Scholar 

  • Ferreira, V., M. A. S. Graça, J. L. M. P. de Lima & R. Gomes, 2006. Role of physical fragmentation and invertebrate activity in the breakdown rate of leaves. Archiv für Hydrobiologie 165(4): 493–513.

    Article  CAS  Google Scholar 

  • Fontaine, S., A. Mariotti & L. Abbadie, 2003. The priming effect of organic matter: a question of microbial competition? Soil Biology & Biochemistry 35: 837–843.

    Article  CAS  Google Scholar 

  • Gaudes, A., J. Artigas, A. M. Romaní, S. Sabater & I. Muñoz, 2009. Contribution of microbial and invertebrate communities to leaf litter colonization in a Mediterranean stream. Journal of North American Benthological Society 28(1): 34–43.

    Article  Google Scholar 

  • Gessner, M. O. & E. Chauvet, 1994. Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75: 1807–1817.

    Article  Google Scholar 

  • Gessner, M. O. & S. Y. Newell, 1997. Bulk quantitative methods for the examination of eukaryotic organoosmotrophs in plant litter. In Hurst, C. J., G. Knudsen, M. McInerney, L. D. Stetzenbach & M. Walter (eds), Manual of Environmental Microbiology. ASM Press, Washington, DC: 295–308.

    Google Scholar 

  • Gessner, M. O. & J. Schwoerbel, 1989. Leaching kinetics of fresh leaf litter with implications for the current concept of leaf litter processing in streams. Archive für Hydrobiologie 115(1): 81–90.

    Google Scholar 

  • Golterman, H. L., R. S. Clymo & M. A. M. Ohnstad, 1978. Method for Physical and Chemical Analysis of Freshwaters. IBP Handbook No. 8. Blackwell Scientific Publication, Oxford: 1–213.

    Google Scholar 

  • Graça, M. A. S., R. C. F. Ferreira & C. N. Coimbra, 2001. Litter processing along a stream gradient: the role of invertebrates and decomposers. Journal of North American Benthological Society 20: 408–419.

    Article  Google Scholar 

  • Grubbs, S. A., R. E. Jacobsen & K. W. Cummins, 1995. Colonization by Chironomidae (Insecta, Diptera) on three distinct leaf substrates in an Appalachian mountain stream. Annales de Limnologie 31(2): 105–118.

    Article  Google Scholar 

  • Gulis, V. & K. Suberkropp, 2003. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshwater Biology 48: 123–134.

    Article  Google Scholar 

  • Güsewell, S. & M. O. Gessner, 2009. N:P ratios influence litter decomposition and colonization by fungi and bacteria. Functional Ecology 23: 211–219.

    Article  Google Scholar 

  • Hammer, R., D. A. T. Harper & P. D. Ryan, 2001. Past paleontological statistics software package for education and data analysis. Paleontologia Electronica 4(1): 1–9.

    Google Scholar 

  • Hodkinson, I.D. & K.A. Williams, 1980. Tube formation and distribution of Chironomus plumosus L. (Diptera: Chironomidae) in a eutrophic woodland pond. In D. A. Murray (ed.), Chironomidae: Ecology, Systematics, Cytology and Physiology. Pergamon Press, Oxford: 331–337. http://books.google.hu/.

  • Jabiol, J. & E. Chauvet, 2015. Biodiversity and litter decomposition: a case study in a Mediterranean stream. Freshwater Science 34(2): 423–430.

    Article  Google Scholar 

  • Jabiol, J., A. Bruder, M. O. Gessner, M. Makkonen, B. G. McKie, E. T. H. M. Peeters, C. A. V. Vos & E. Chauvet, 2013. Diversity patterns of leaf-associated aquatic hyphomycetes along a broad latitudinal gradient. Fungal Ecology 6(5): 439–448.

    Article  Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river floodplain systems In Dodge, D. P. (ed.), Proceedings of the International Large River Symposium. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.

  • Lambers, H., F. S. Chapin III & T. L. Pons, 2008. Plant Physiological Ecology. Springer Science & Business Media. http://books.google.hu/.

  • Langhans, S. D. & K. Tockner, 2006. The role of timing duration and frequency of inundation in controlling leaf litter decomposition in a river-floodplain ecosystem (Tagliamento, northeastern Italy). Oecologia 147: 501–509.

    Article  PubMed  Google Scholar 

  • Langhans, S. D., S. D. Tiegs, M. O. Gessner & K. Tockner, 2008. Leaf decomposition heterogeneity across a riverine floodplain mosaic. Aquatic Sciences 70: 337–346.

    Article  Google Scholar 

  • Lecerf, A., H. Hampel, Y. Hong, J. Nijs, L. Hellings & M. Tackx, 2008. Decomposition of willow (Salix triandra L.) leaves in the schelde estuary (Belgium). Verhandlungen des Internationalen Verein Limnologie 30(4): 603–606.

    CAS  Google Scholar 

  • Ligeiro, R., M. S. Moretti, J. F. Gonçalves Jr & M. Callisto, 2010. What is more important for invertebrate colonization in a stream with low-quality litter inputs: exposure time or leaf species? Hydrobiologia 654(1): 125–136.

    Article  Google Scholar 

  • Maltby, E. & T. Barker, 2009. The Wetland Handbook, Blackwell, Oxford. Maltby, E. & T. Barker (eds), The Wetlands Handbook. Wiley-Blackwell, Oxford, http://books.google.hu/.

  • Marquardt, D. W., 1963. An algorithm for least-squares estimation of nonlinear inequalities. Journal of the Society for Industrial and Applied Mathematics 11(2): 431–441.

    Article  Google Scholar 

  • Mathuriau, C. & E. Chauvet, 2002. Breakdown of leaf litter in a neotropical stream. Journal of North American Benthological Society 21(3): 384–396.

    Article  Google Scholar 

  • Mendoza-Lera, C., A. Larrañaga, J. Pérez, E. Descals, A. Martínez, O. Moya, I. Arostegui & J. Pozo, 2012. Headwater reservoirs weaken terrestrial-aquatic linkage by slowing leaf-litter processing in downstream regulated reaches. River Research and Applications 28: 13–22.

    Article  Google Scholar 

  • Olson, J. S., 1963. Energy storage and the balance of producers and decomposition in ecological systems. Ecology 44: 322–330.

    Article  Google Scholar 

  • Packard, T. T., M. L. Healy & F. A. Richards, 1971. A vertical distribution of the activity of the respiratory electron transport system in marine plankton. Limnology and Oceanography 16(1): 60–70.

    Article  Google Scholar 

  • Park, S. & K. H. Cho, 2003. Nutrient leaching from leaf litter of emergent macrophyte (Zizania latifolia) and the effects of water temperature on the leaching process. Korean Journal of Biological Sciences 7: 289–294.

    Article  Google Scholar 

  • Petersen, C. P. & K. W. Cummins, 1974. Leaf processing in a woodland stream. Freshwater Biology 4: 343–368.

    Article  Google Scholar 

  • Riedl, H. L., L. B. Marczak, N. A. McLenaghan & T. M. Hoover, 2013. The role of stranding and inundation on leaf litter decomposition in headwater streams. Riparian Ecology and Conservation REMC: 3–10. 10.2478/remc-2013-0002.

  • Rinkes, Z. L., R. L. Sinsabaugh, D. L. Moorhead, A. S. Grandy & M. N. Weintraub, 2013. Field and lab conditions alter microbial enzyme and biomass dynamics driving decomposition of the same leaf litter. Frontiers in Microbiology 4(260): 1–14.

    Google Scholar 

  • Rûžička, J. & J. W. B. Stewart, 1975. Flow Injection Analysis. Part II. Ultrafast determination of phosphorus in plant material by continuous flow spectrophotometry. Analytica Chimica Acta 79: 79–91.

    Article  Google Scholar 

  • Sanseverino, A. M. & J. L. Nessimian, 2008. The food of larval Chironomidae (Insecta, Diptera) in submerged litter in a forest stream of the Atlantic Forest (Rio de Janeiro, Brazil). Acta Limnologica Brasiliensia 20(1): 15–20.

    Google Scholar 

  • Sheldon, F. & M. C. Thoms, 2006. In-channel geomorphic complexity: the key to the dynamics of organic matter in large dryland rivers. Geomorphology 77(3–4): 277–285.

    Google Scholar 

  • StatSoft, Inc. 2001. STATISTICA (Data Analysis Software System), version 6. www.statsoft.com.

  • Suberkropp, K., G. L. Godshalk & M. J. Klug, 1976. Changes in the chemical composition of leaves during processing in a woodland stream. Ecology 57: 720–727.

    Article  CAS  Google Scholar 

  • Swan, C. M. & J. S. Kominoski, 2012. Biodiversity and Ecosystem Function of Decomposition. Wiley, Chichester.

    Book  Google Scholar 

  • Tank, J. L., E. J. Rosi-Marshall, N. A. Griffiths, S. A. Entrekin & M. L. Stephen, 2010. A review of allochthonous organic matter dynamics and metabolism in streams. Journal of North American Benthological Society 29(1): 118–146.

    Article  Google Scholar 

  • Thompson, P. L. & F. Bärlocher, 1989. Effect of pH on leaf breakdown in streams and in the laboratory. Journal of North American Benthological Society 8: 203–210.

    Article  Google Scholar 

  • Tiegs, S. D., S. D. Langhans, K. Tockner & M. O. Gessner, 2007. Cotton strips as a leaf surrogate to measure decomposition in river floodplain habitats. Journal of North American Benthological Society 26(1): 70–77.

    Article  Google Scholar 

  • Vannote, J. R., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Webster, J. R. & E. F. Benfield, 1986. Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics 17: 567–594.

    Article  Google Scholar 

  • Webster, J. R. & J. L. Meyer, 1997. Stream organic matter budgets. Journal of North American Benthological Society 16(1): 3–61.

    Article  Google Scholar 

  • Wright, M. S. & A. P. Covich, 2005. The effect of macroinvertebrate exclusion on leaf breakdown rates in a tropical headwater stream. Biotropica 37(3): 403–408.

    Article  Google Scholar 

  • Zaiontz C., 2015. Real statistics using excel. www.real-statistics.com.

Download references

Acknowledgments

This work was supported by the Deutsche Bundesstiftung Umwelt (DBU), AZ 24050 project and by the Hungarian Academy of Sciences. We thank Győző Buzetzky for his help in the fieldwork, Árpád Berczik for his valuable suggestions, Gábor Horváth and Bernadett Garad for the chemical analyses and Paul Thatcher for English language editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edit Ágoston-Szabó.

Additional information

Guest editors: Pierluigi Viaroli, Marco Bartoli & Jan Vymazal / Wetlands Biodiversity and Processes: Tools for Management and Conservation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ágoston-Szabó, E., Schöll, K., Kiss, A. et al. Mesh size and site effects on leaf litter decomposition in a side arm of the River Danube on the Gemenc floodplain (Danube-Dráva National Park, Hungary). Hydrobiologia 774, 53–68 (2016). https://doi.org/10.1007/s10750-015-2616-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2616-3

Keywords

Navigation