Skip to main content
Log in

Zooplankters as indicators of ecosystem health: past findings and future directions

  • Published:
Journal of Aquatic Ecosystem Health

Abstract

Both acute (ingestion, respiration) and chronic bioassays (reproduction, survival) have been used to identify sources of pollutants. A mass-balance analysis suggests that acute tests be paired, using important indicator species asDaphnia, Ceriodaphnia and potentially others, to estimate the impact of contaminants upon the zooplankton community. Eventually groups of community bioassays may be combined to approximate an ecosystem bioassay. Hormesis or the stimulation of a physiological process by a compound which is toxic at high concentrations is characteristic of several bioassays; in this paper the ecotoxicology community is challenged to keep detailed records of the species, toxic compound, and physiological response involving hormesis in order to understand it; and ultimately to use it to simplify interpretation of bioassays. Life history characteristics of the cladoceran zooplankton, including early reproduction, high net reproductive rates, and the potential for many parthenogenetic generations with constant genotypes and low mutation rates make good choices for environmental bioassays. In contrast, high mutation rates of rotifers make them questionable choices. Five innovations, one or more of which may improve our ability to detect and identify pollutants, are suggested for ecotoxicologists using zooplankton. These include (a) the use of strains of known genotype; (b) determination of the genetic adaptation of clones to common toxins; (c) the use of common behaviors, including responses to light in detection of non-lethal chemicals at ambient levels; (d) record keeping on occurrence of cladoceran tumors; and (e) the determination of precise toxins responsible for the inhibition of zooplankton function and behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adema, D. M. M., 1978.Daphnia magna as a test animal in acute and chronic toxicity tests. Hydrobiologia 59: 125–34.

    Google Scholar 

  • Baird, D. J., I., Barber, M., Bradley, P., Calow & A. M. V. M., Soares, 1989. TheDaphnia bioassay: a critique. Hydrobiologia 188/189: 403–406.

    Google Scholar 

  • Baird, D. J., I., Barber, M., Bradley, A. M. V. M., Soares & P., Calow, 1991. A comparative study of genotype sensitivity to acute toxic stress using clones ofDaphnia magna Straus. Ecotox. Environ. Safety 21: 257–265.

    Google Scholar 

  • Banta, A. M., 1914. One hundred parthenogenetic generations ofDaphnia without sexual forms. Proc. Soc. Exper. Biol. Med. 11: 180–182.

    Google Scholar 

  • Baylor, E. R. & F. E., Smith. 1953. The orientation of Cladocera to polarized light. Amer. Natur. 87: 97–101.

    Google Scholar 

  • Bjornberg, T. K. S. & K. M., Wilbur, 1968. Copepod phototaxis and vertical migration influenced by xanthene dyes. Biol. Bull. 134: 398–410.

    Google Scholar 

  • Bogdan, K. & D. C., McNaught, 1975. Selective feeding byDiaptomus andDaphnia. Verh. Internat. Verein. Limnol. 19: 2935–2942.

    Google Scholar 

  • Bridgham, S., 1988. Chronic effects of 2, 2′-dichlorobiphenyl on reproduction, mortality, growth, and respiration ofDaphnia pulicaria. Arch. Envir. Contam. Toxicol. 17: 731–740.

    Google Scholar 

  • Cooley, J. M., 1977. Filtering rate performance ofDaphnia retrocurva in pulp mill effluent. J. Fish. Res. Board Can. 39: 4863–4868.

    Google Scholar 

  • Goulden, C. E., R. M. Comotto, J. A. Hendrickson, Jr., L. L. Horning & K. L. Johnson, 1982. Procedures and recommendations for culture and use ofDaphnia in bioassay studies. In: J. G. Pearson, R. B. Foster & W. E. Bishop (eds), Aquatic Toxicology and hazard Assessment: Fifth Conf. Amer. Soc. Test. Materials, STP 766: 139–160.

  • Harshbarger, J. C., 1981. Activities Report: Registry of Tumors in Lower Animals: 1981 Supplement. Smithsonian Inst., Washington, D. C. Mimeo. 52 pp.

    Google Scholar 

  • Hebert, P. D. N., 1980. The genetics of Cladocera. In: W. C., Kerfoot (ed.),Evolution and Ecology of Zooplankton Communities. pp. 329–336. Spec. Symp. Vol. 3, Amer. Soc. Limnol. Oceanogr. Univ. Press, New England, Hanover.

    Google Scholar 

  • Hebert, P. & R. D., Ward, 1972. Inheritance during parthenogenosis inDaphnia magna. Genetics 71: 639–642.

    Google Scholar 

  • Henry, M. G., 1984. Comparative lethal body burdens of toxic chemicals in three phyla of aquatic animals: correlation of body burden to survival. U.S. Environ. Protect. Agency, AD-14-F-1-556-0. 77 pp.

  • Johnson, S. K., 1977. Handbook of crawfish and freshwater shrimp diseases. Texas AM Univ. Publ. TAMU 59 77605.

  • King, C. E., 1980. The genetic structure of zooplankton populations. In: W. C., Kerfoot (ed.),Evolution and Ecology of Zooplankton Communities. pp. 315–328. Spec. Symp. Vol. 3, Amer. Soc. Limnol. Oceanogr. Univ. Press New England, Hanover.

    Google Scholar 

  • Lampert, W., W., Fleckner, E., Pott, V., Schober & K.-U., Störkel, 1989. Herbicide effects on planktonic systems of different complexity. In: W. C., Kerfoot (ed.),Evolution and Ecology of Zooplankton Communities. pp. 415–424. Spec. Symp. Vol. 3, Amer. Soc. Limnol. Oceanogr. Univ. Press, New England, Hanover.

    Google Scholar 

  • Laskowski-Hohe, R. A. & B. L., Prater, 1981. Relationship of mortality of aquatic biota from 96-hour sediment bioassays and the change in chemical composition of test water. Bull. Environ. Contam. Toxicol. 26: 323–327.

    Google Scholar 

  • Laughlin, K., W., French & H. E., Guard, 1983. Acute and sublethal toxicity of tributyltin oxide (TBTO) and its putative environmental product, tributyltin sulfide (TBTS) to zoeal mud crabs,Rhithropanopeus harrissi. Water, Air Soil Pollut. 20: 69–79.

    Google Scholar 

  • Lynch, M., 1980. The evolution of cladoceran life histories. Quart. Rev. Biol. 55: 23–42.

    Google Scholar 

  • Maki, A. W. & H. E., Johnson, 1975. Effects of PCB (Aroclor 1254) and p, p DDT on production and survival ofDaphnia magna Straus. Bull. Environ. Contam. Toxicol. 13: 412–416.

    Google Scholar 

  • McNaught, D. C., 1965. A study of some ecological relationships and the role of vision in the diel migrations ofDaphnia. Ph.D. Thesis, Univ. Wisconsin, Madison. 169 pp.

  • McNaught, D. C., 1989. Functional bioassays utilizing zooplankton: a comparison. In: M. Munawar, G. Dixon, C. I. Mayfield, T. Reynoldson & M. H. Sadar (eds), Environmental Bioassay Techniques and their Application. Hydrobiologia 188–189: 117–121.

  • McNaught, D. C. & D. C. Drake, 1993. Behavioral assays employingDaphnia for detection of sublethal effects: responses to ALD. (submitted).

  • McNaught, D. C. & A. D., Hasler, 1964. Rate of movement of populations ofDaphnia in relation to changes in light intensity. J. Fish. Res. Board Can. 21: 291–318.

    Google Scholar 

  • McNaught, D. C. & D. I. Mount, 1986. Appropriate durations and measures forCeriodaphnia toxicity tests. In: R. C. Bahner & D. J. Hansen (eds), Aquatic Toxicology and Hazard Assessment: Eighth Symp., Amer. Soc. Test. Materials, STP 891: 375–381.

  • McNaught, D. C., S. D. Bridgham & C. Meadows, 1988. Effects of complex effluents from the River Raisin on zooplankton grazing in Lake Erie, In: J. Cairns (ed.), Functional Testing of Aquatic Biota for Hazard Estimation. Amer. Soc. Test. Materials, STP 988: 128–136.

  • Mirza, M., 1968. An ecological study on the nature of pollution on Tonawonda and Ellicott Creeks of the Niagara River Basin and the effects of various chemical variables on the feeding and reproductive rates ofDaphnia magna. Ph.D. Thesis, State Univ. New York at Buffalo. 190 pp.

  • Mount, D. I. & T. J., Norberg-King, 1984. A seven-day life-cycle cladoceran toxicity test. Environ. Toxicol. Chem. 3: 425–434.

    Google Scholar 

  • Nebecker, A. V. & F. A., Puglesi, 1974. Effect of polychlorinated biphenyls (PCBs) on survival and reproduction ofDaphnia, Gammarus andTanytarsus. Trans. Amer. Fish. Soc. 163: 722–728.

    Google Scholar 

  • Overstreet, R. M. & T.Van, Devender, 1978. Implications of an environmentally induced hematoma in commercial shrimps. J. Invert. Pathol. 31: 234–238.

    Google Scholar 

  • Richman, S., 1958. The transformation of energy byDaphnia pulex. Ecol. Monogr. 28: 223–291.

    Google Scholar 

  • Ringelberg, J., 1964. The positively phototactic reaction ofDaphnia magna Straus: a contribution to the under-standing of diurnal vertical migration. Netherlands J. Sea Res. 2/3: 319–406.

    Google Scholar 

  • Ringelberg, J., 1980. Introductory remarks: causal and telelogical aspects of diurnal vertical migration. In: W. C., Kerfoot (ed.),Evolution and Ecology of Zooplankton Communities. pp. 65–68. Univ. Press, New England, Hanover.

    Google Scholar 

  • Schröeder, R., 1964. Keine endogene Rhythmik bei den Vertikalwanderungen des zooplanktons. Arch. Hydrobiol 25/Suppl. Falkau 4: 411–413.

    Google Scholar 

  • Sparkes, A. K. & D. V., Lightner, 1973. A tumorlike papilliform growth in the brown shrimpPenaeus aztecus. J. Invert. Pathol. 22: 203–212.

    Google Scholar 

  • Waterman, T. H., 1960. Interaction of polarized light and turbidity in the orientation ofDaphnia andMysidium. Z. Vergl. Physiol. 43: 149–172.

    Google Scholar 

  • Waterman, T. H., 1961. Light sensitivity and vision. In: T. H., Waterman (ed.),The Physiology of Crustacea. pp. 1–53. Academic Press, New York.

    Google Scholar 

  • Weber, C. & 13 others, 1989. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. U.S. Environ. Protect. Agency, EPA/600/4–89/001. Cincinnati, OH. 249 pp.

    Google Scholar 

  • Wells, L., 1970. Effects of alewife predation on zooplankton populations in Lake Michigan. Limnol. Oceanogr. 15: 556–565.

    Google Scholar 

  • Whitney, L. V., 1941. The angular distribution of characteristic diffuse light in natural waters. J. Mar. Res. 4: 122–131.

    Google Scholar 

  • Zaffagnini, F. & B., Sabelli, 1972. Karyologic observations on the maturation of the summer and winter eggs ofDaphnia pulex andDaphnia middendorffiana. Chromosoma 36: 193–203.

    Google Scholar 

  • Zaret, T. M., 1969. Predation-balanced polymorphism ofCeriodaphnia cornuta Sars. Limnol. Oceanogr. 14: 301–303.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McNaught, D.C. Zooplankters as indicators of ecosystem health: past findings and future directions. J Aquat Ecosyst Stress Recov 1, 271–281 (1992). https://doi.org/10.1007/BF00044169

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00044169

Keywords

Navigation