Skip to main content
Log in

The dual boundary element method for thermoelastic crack problems

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A boundary element formulation, which does not require domain discretization and allows a single region analysis, is presented for steady-state thermoelastic crack problems. The problems are solved by the dual boundary element method which uses displacement and temperature equations on one crack surface and traction and flux equations on the other crack surface. The domain integrals are transformed to boundary integrals using the Galerkin technique. Stress intensity factors are calculated using the path independent Ĵ-integral. Several numerical problems are solved and the results are compared, where possible, with existing solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Sumi and T. Katayama, Nuclear Engineering Design 60 (1980) 389–394.

    Google Scholar 

  2. H. Nakanishi, S. Tani, M. Suzuki and N. Sumi, Transactions Japan Society of Mechanical Engineers 51 (469), (1985) 2094–2102.

    Google Scholar 

  3. A.F. Emery, P.K. Neighbors, A.S. Kobayashi and W.J. Love, Journal of Pressure Vessel Technology 99 (1977) 100–104.

    Google Scholar 

  4. T.K. Hellen, F. Cesari and A. Maitan, International Journal of Pressure Vessels and Piping 10 (1982) 181–204.

    Google Scholar 

  5. E. Emmel and H. Stamm, International Journal of Pressure Vessels and Piping 19 (1985) 1–17.

    Google Scholar 

  6. M.H. Aliabadi and D.P. Rooke, Numerical Fracture Mechanics. Computational Mechanics Publications, Southampton, Kluwer, Dordrecht (1991).

    Google Scholar 

  7. M. Tanaka, H. Togoh and M. Kikuta, in Topics in Boundary Element Research, vol. 1, C.A. Brebbia (ed.) Springer-Verlag, Berlin (1984) 59–77.

    Google Scholar 

  8. S.T. Raveendra and P.K. Banerjee, International Journal of Solids and Structures 29 (18) (1992) 2301–2317.

    Google Scholar 

  9. K.Y. Lee and Y.H. Cho, Engineering Fracture Mechanics 37 (4) (1990) 787–798.

    Google Scholar 

  10. N. Liu and N.J. Altiero, Applied Mathematical Modelling 16 (1992) 618–629.

    Google Scholar 

  11. V. Sladek and J. Sladek, in Boundary Element Methods in Heat Transfer, L.C. Wrobel and C.A. Brebbia (eds.) Computational Mechanics Publications, Southampton, Elsevier Applied Science, London (1992).

    Google Scholar 

  12. G.E. Blandford, A.R. Ingraffea and J.A. Liggett, International Journal for Numerical Methods in Engineering 17 (1981) 387–404.

    Google Scholar 

  13. A. Portela, M.H. Aliabadi and D.P. Rooke, International Journal for Numerical Methods in Engineering 33 (1992) 1269–1287.

    Google Scholar 

  14. Y. Mi and M.H. Aliabadi, Engineering Analysis with Boundary Elements 10 (1992) 161–171.

    Google Scholar 

  15. P. Fedelinski, M.H. Aliabadi and D.P. Rooke, Engineering Analysis and Boundary Elements, 12 (1993) 203–210.

    Google Scholar 

  16. C.A. Brebbia, J. Telles and L. Wrobel, Boundary Element Techniques: Theory and Applications in Engineering, Springer-Verlag, New York (1984).

    Google Scholar 

  17. K. Kishimoto, S. Aoki and M. Sakata, Engineering Fracture Mechanics 13 (1980) 841–850.

    Google Scholar 

  18. J.C.F. Telles and A.A. Prado, in Advanced Formulation in Boundary Element Methods, M.H. Aliabadi and C.A. Brebbia (eds.) CMP-Elsevier (1993).

  19. T.A. Cruse, Mathematical Foundations of the Boundary Integral Equation Method in Solid Mechanics, Report No. AFOSR-TR-77-1002, Pratt and Whitney Aircraft Group (1977).

  20. Y. Murakami (ed.), Stress Intensity Factor Handbook, Pergamon Press (1987).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, N.N.V., Aliabadi, M.H. & Rooke, D.P. The dual boundary element method for thermoelastic crack problems. Int J Fract 66, 255–272 (1994). https://doi.org/10.1007/BF00042588

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00042588

Keywords

Navigation