Skip to main content
Log in

Boundary conditions at the edge of a thin or thick plate bonded to an elastic support

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

At the clamped edge of a thin plate, the interior transverse deflection ω(x 1, x2) of the mid-plane x 3=0 is required to satisfy the boundary conditions ω=ϖω/ϖn=0. But suppose that the plate is not held fixed at the edge but is supported by being bonded to another elastic body; what now are the boundary conditions which should be applied to the interior solution in the plate? For the case in which the plate and its support are in two-dimensional plane strain, we show that the correct boundary conditions for ω must always have the form

% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakqaabeqaaiaabEhacaqGTaWa% aSaaaeaacaGG0aGaae4vamaaCaaaleqabaGaamOqaaaaaOqaaiaaco% dadaqadaqaaiaacgdacqGHsislcaqG2baacaGLOaGaayzkaaaaaiaa% bIgadaahaaWcbeqaaiaackdaaaGcdaWcaaqaaiaabsgadaahaaWcbe% qaaiaackdaaaGccaqG3baabaGaaeizaiaabIhafaqabeGabaaajaaq% baqcLbkacaGGYaaajaaybaqcLbkacaGGXaaaaaaakiabgUcaRmaala% aabaGaaiinaiaabEfadaahaaWcbeqaaiaadAeaaaaakeaacaGGZaWa% aeWaaeaacaGGXaGaeyOeI0IaaeODaaGaayjkaiaawMcaaaaacaqGOb% WaaWbaaSqabeaacaGGZaaaaOWaaSaaaeaacaqGKbWaaWbaaSqabeaa% caGGZaaaaOGaae4DaaqaaiaabsgacaqG4bqcaaubaeqabiqaaaqcaa% saaiaacodaaKaaafaajugGaiaacgdaaaaaaOGaeyypa0Jaaiimaiaa% cYcaaeaadaWcaaqaaiaabsgacaqG3baabaGaaeizaiaabIhaliaacg% daaaGccqGHsisldaWcaaqaaiaacsdacqqHyoqudaahaaWcbeqaaiaa% bkeaaaaakeaacaGGZaWaaeWaaeaacaGGXaGaeyOeI0IaaeODaaGaay% jkaiaawMcaaaaacaqGObWaaSaaaeaacaqGKbWaaWbaaSqabeaacaGG% YaaaaOGaae4DaaqaaiaabsgacaqG4bqbaeqabiqaaaqcaauaaKqzGc% GaaiOmaaqcaawaaKqzGcGaaiymaaaaaaGccqGHRaWkdaWcaaqaaiaa% csdacqqHyoqudaahaaWcbeqaaiaabAeaaaaakeaacaGGZaWaaeWaae% aacaGGXaGaeyOeI0IaaeODaaGaayjkaiaawMcaaaaacaqGObWaaWba% aSqabeaacaGGYaaaaOWaaSaaaeaacaqGKbWaaWbaaSqabeaacaGGZa% aaaOGaae4DaaqaaiaabsgacaqG4bqcaaubaeqabiqaaaqcaasaaiaa% codaaKaaafaajugGaiaacgdaaaaaaOGaeyypa0JaaiimaiaacYcaaa% aa!993A!\[\begin{gathered}{\text{w - }}\frac{{4{\text{W}}^B }}{{3\left( {1 - {\text{v}}} \right)}}{\text{h}}^2 \frac{{{\text{d}}^2 {\text{w}}}}{{{\text{dx}}\begin{array}{*{20}c}2 \\1 \\\end{array} }} + \frac{{4{\text{W}}^F }}{{3\left( {1 - {\text{v}}} \right)}}{\text{h}}^3 \frac{{{\text{d}}^3 {\text{w}}}}{{{\text{dx}}\begin{array}{*{20}c}3 \\1 \\\end{array} }} = 0, \hfill \\\frac{{{\text{dw}}}}{{{\text{dx}}1}} - \frac{{4\Theta ^{\text{B}} }}{{3\left( {1 - {\text{v}}} \right)}}{\text{h}}\frac{{{\text{d}}^2 {\text{w}}}}{{{\text{dx}}\begin{array}{*{20}c}2 \\1 \\\end{array} }} + \frac{{4\Theta ^{\text{F}} }}{{3\left( {1 - {\text{v}}} \right)}}{\text{h}}^2 \frac{{{\text{d}}^3 {\text{w}}}}{{{\text{dx}}\begin{array}{*{20}c}3 \\1 \\\end{array} }} = 0, \hfill \\\end{gathered}\]with exponentially small error as L/h→∞, where 2h is the plate thickness and L is the length scale of ω in the x 1-direction. The four coefficients W B, WF, ΘB, ΘF are computable constants which depend upon the geometry of the support and the elastic properties of the support and the plate, but are independent of the length of the plate and the loading applied to it. The leading terms in these boundary conditions as L/h→∞ (with all elastic moduli remaining fixed) are the same as those for a thin plate with a clamped edge. However by obtaining asymptotic formulae and general inequalities for ΘB, W F, we prove that these constants take large values when the support is ‘soft’ and so may still have a strong influence even when h/L is small. The coefficient W F is also shown to become large as the size of the support becomes large but this effect is unlikely to be significant except for very thick plates. When h/L is small, the first order corrected boundary conditions are

w=0,% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaadaWcaaqaaiaabsgacaqG% 3baabaGaaeizaiaabIhaliaacgdaaaGccqGHsisldaWcaaqaaiaacs% dacqqHyoqudaahaaWcbeqaaiaabkeaaaaakeaacaGGZaWaaeWaaeaa% caGGXaGaeyOeI0IaaeODaaGaayjkaiaawMcaaaaacaqGObWaaSaaae% aacaqGKbWaaWbaaSqabeaacaGGYaaaaOGaae4DaaqaaiaabsgacaqG% 4bqbaeqabiqaaaqcaauaaKqzGcGaaiOmaaqcaawaaKqzGcGaaiymaa% aaaaGccqGH9aqpcaGGWaGaaiilaaaa!5DD4!\[\frac{{{\text{dw}}}}{{{\text{dx}}1}} - \frac{{4\Theta ^{\text{B}} }}{{3\left( {1 - {\text{v}}} \right)}}{\text{h}}\frac{{{\text{d}}^2 {\text{w}}}}{{{\text{dx}}\begin{array}{*{20}c}2 \\1 \\\end{array} }} = 0,\]which correspond to a hinged edge with a restoring couple proportional to the angular deflection of the plate at the edge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Austin, Ph.D. Thesis, University of Manchester (1987).

  2. K.O. Friedrichs and R.F. Dressler, A boundary layer theory for the bending of plates. Comm. Pure Appl. Math. 14 (1961) 1–33.

    Google Scholar 

  3. A.L. Gol'denviezer, Derivation of an approximate theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity. PMM 26 (1962) 668–686.

    Google Scholar 

  4. R.D. Gregory, Green's functions, bi-linear forms, and completeness of the eigenfunctions for the elastostatic strip and wedge. J. Elasticity 9 (1979) 283–309.

    Google Scholar 

  5. R.D. Gregory, The general form of the three-dimensional elastic field inside an isotropic plate with free faces. J. Elasticity 28 (1992) 1–28.

    Google Scholar 

  6. R.D. Gregory and I. Gladwell, The cantilever beam under tension, bending or flexure at infinity. J. Elasticity 12 (1982) 317–343.

    Google Scholar 

  7. R.D. Gregory and F.Y.M. Wan, Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory. J. Elasticity 14 (1984) 27–64.

    Google Scholar 

  8. R.D. Gregory and F.Y.M. Wan, On plate theories and Saint-Venant's principle. Int. J. Solids Structures 21 (1985) 1005–1024.

    Google Scholar 

  9. R.D. Gregory and F.Y.M. Wan, Edge effects in the stretching of plates. In: P. Ladeveze (ed.), Local Effects in the Analysis of Structures. Amsterdam: Elsevir Science Publishers (1985), 35–54.

    Google Scholar 

  10. R.D. Gregory and F.Y.M. Wan, The interior solution for linear problems of elastic plates. J. Appl. Mech. 55 (1988) 551–559.

    Google Scholar 

  11. R.D. Gregory and F.Y.M. Wan, Correct asymptotic theories for the axisymmetric deformation of thin and moderately thick cylindrical shells. Int. J. Solids Structures 14 (1993) 1957–1981.

    Google Scholar 

  12. G. Kirchhoff, Über das gleichgewicht und die bewegung einer elastichen scheibe, J. Reine Ange. Math. (Crelle) 40 (1850) 51.

    Google Scholar 

  13. Y. Lin and F.Y.M. Wan, First integrals and the residual solution for orthotropic plates in plane strain or axisymmetric deformations. Studies in Appl. Math. 79 (1988) 93–125.

    Google Scholar 

  14. Y. Lin and F.Y.M. Wan, Circular elastic plates with prescribed axisymmetric edge displacements. Canadian Appl. Math. Quart. 1 (1993) 311–342.

    Google Scholar 

  15. N.I. Muskhelishvili, Some Basic Problems of the Theory of Elasticity (Translated into English by J.R.M. Radok) Gröningen, Netherlands: Noordhoff (1953).

    Google Scholar 

  16. E. Sternberg and J.K. Knowles, Minimum energy characterizations of Saint-Venant's solution to the relaxed Saint-Venant problem. Arch. Rat. Mech. Anal. 21 (1966) 89–107.

    Google Scholar 

  17. S. Timoshenko and N. Goodier, Theory of Elasticity, 2nd edn. New York: McGraw-Hill (1951).

    Google Scholar 

  18. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd edn. New York: McGraw-Hill (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregory, R.D., Wan, F.Y.M. Boundary conditions at the edge of a thin or thick plate bonded to an elastic support. J Elasticity 36, 155–182 (1994). https://doi.org/10.1007/BF00040963

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00040963

Keywords

Navigation