Skip to main content
Log in

Dynamic fracture detection using the force-displacement reciprocity: application to the compact compression specimen

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Dynamic fracture toughness is determined by impacting fracture specimens and determining the onset of crack propagation. In such experiments characteristic impedance (actuator-specimen) matching problems can affect the accuracy of the measured forces. In addition, fracture time is mostly determined by means of surface rather than bulk devices (e.g. gages). In this paper we address these issues in linear-elastic materials. Based on the H-integral we show that either the measured forces or the displacements (whichever is more accurate) can be used to calculate the evolutions of the stress intensity factors. These evolutions must be identical by virtue of the reciprocity between forces and displacements, at least until some bulk fracture process develops. Examples are presented to illustrate how these observations can be applied to ‘fine-tune’ dynamic fracture experiments and complement fracture gage readings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.B. Freund, Dynamic Fracture, Cambridge University Press Cambridge (1990).

    Book  Google Scholar 

  2. Crack Dynamics in Metallic Materials, J.R. Klepaczko(ed.) Springer-Verlag, Wien (1990).

    Google Scholar 

  3. J.J. Mason, J. Lambros and A.J. Rosakis, Journal of the Mechanics and Physics of Solids 40 (3) (1992) 641–661.

    Article  Google Scholar 

  4. H.D. Bui and H. Maigre Comptes Rendus Académie des Sciences de Paris tome 306 Série II (1988) 1213–1216.

  5. H.D. Bui. H. Maigre and D. Rittel, International Journal of Solids and Structures 29 (23) (1992) 2881–2895.

    Article  Google Scholar 

  6. D. Rittel, H. Maigre and H.D. Bui, Scripta Metallurgica et Materialia 26 (1992) 1593–1598.

    Article  Google Scholar 

  7. J.F. Kalthoff and R. Podleschny, in Proceedings of the International Symposium on Impact Engineering, I. Maekawa (ed.) (1992) 605–610.

  8. H. Maigre and D. Rittel, International Journal of Solids and Structures 30 (23) (1993) 3233–3244.

    Article  Google Scholar 

  9. H. Kolsky, Proceedings of the Physical Society of London B62 (1949) 676–700.

    Article  Google Scholar 

  10. D. Rittel and H. Maigre, in Proceeding of the Eighth International Conference on Fracture, Kiev (1993) to appear.

  11. H. Wada, Engineering Fracture Mechanics 41 (6) (1992) 821–831.

    Article  Google Scholar 

  12. K.J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Inc., Englewood Cliffs (1982).

    Google Scholar 

  13. M. Bulik, Sur l'optimisation de protections parasismiques, Doctoral thesis, Universite Paris VI, Paris (1993).

  14. P.S. Follansbee, in Metals Handbook Vol. 8, 9th edn., ASM, Metals Park (1985).

    Google Scholar 

  15. H. Kolsky, Stress Waves in Solids, Dover, Inc., New York (1963).

    Google Scholar 

  16. S. Aoki and T. Kimura, Journal of the Mechanics and Physics of Solids 41 (3) (1993) 413–425.

    Article  Google Scholar 

  17. CEA, CASTEM 2000 Object Oriented FE Code, Saclay.

  18. M.F. Kanninen and C.H. Popelar, Advanced Fracture Mechanics, Oxford University Press, New York (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maigre, H., Rittel, D. Dynamic fracture detection using the force-displacement reciprocity: application to the compact compression specimen. Int J Fract 73, 67–79 (1995). https://doi.org/10.1007/BF00039852

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00039852

Keywords

Navigation