Skip to main content
Log in

Computation of membrane and bending stress intensity factors for thin, cracked plates

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The crack tip stress fields for plate bending and membrane loading problems are reviewed and the four stress intensity factors that determine these fields are defined. These four stress intensity factors arise from use of Kirchhoff plate theory to account for the bending loads and two dimensional plane stress elasticity to account for the membrane loads. The energy release rate is related to the stress intensity factors and to the stress resultants of plate theory. Virtual crack extension, nodal release and modified crack closure integral methods are discussed for computing components of the energy release rate from finite element analyses of cracked plates. Sample computations of stress intensity factors for single and mixed mode cases are presented for a crack in an infinite plate. Sample computations of stress intensity factors for a double edge notched tension-torsion test specimen are given as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Alwar and K.N. Ramachandran, Engineering Fracture Mechanics 17 (1983) 323–333.

    Article  Google Scholar 

  2. E. Reissner, Quarterly of Applied Mathematics 5 (1947) 55–68.

    Google Scholar 

  3. J.G. Simmonds and J. Duva, Journal of Applied Mechanics 48 (1981) 320–326.

    Article  Google Scholar 

  4. G.C. Sih, P.C. Paris and F. Erdogan, Journal of Applied Mechanics 29 (1962) 306–312.

    Article  Google Scholar 

  5. Y. Murakami, Stress Intensity Factors Handbook-Vol. 2, Pergamon Press, Elmsford, New York (1987).

    Google Scholar 

  6. M.H. Aliabadi and D.P. Rooke, Numerical Fracture Mechanics, Kluwer Academic Publishers, Dordrecht (1991).

    Book  Google Scholar 

  7. G.R. Irwin, Journal of Applied Mechanics 24 (1957) 361–364.

    Google Scholar 

  8. J.R. Rice, in Fracture, Vol. 2, H. Liebowitz (ed.) Academic Press (1968).

  9. A.C. Ugural, Stresses in Plates and Shells, McGraw-Hill, New York (1981).

    Google Scholar 

  10. M.L. Williams, Journal of Applied Mechanics 24 (1957) 109–114.

    Google Scholar 

  11. M.L. Williams, Journal of Applied Mechanics 28 (1961) 78–82.

    Article  Google Scholar 

  12. C.-Y. Hui and A.T. Zehnder, International Journal of Fracture 61 (1993) 211–229.

    Article  Google Scholar 

  13. A.T. Zehnder, M.J. Viz and A.I. Ingraffea, in Proceedings of the VII International Congress on Experimental Mechanics, Society for Experimental Mechanics, Bethel, Connecticut (1992) 44–50.

    Google Scholar 

  14. D.M. Parks, International Journal of Fracture Mechanics 10 (1974) 487–502.

    Article  Google Scholar 

  15. T.K. Hellen, International Journal of Numerical Methods in Engineering 9 (1975) 187–207.

    Article  Google Scholar 

  16. H.G.de Lorenzi, Engineering Fracture Mechanics 21 (1985) 129–143.

    Article  Google Scholar 

  17. T.K. Hellen and W.S. Blackburn, Engineering Computation 4 (1987) 2–14.

    Article  Google Scholar 

  18. E. Riks, C.C. Rankin and F.A. Brogan, Engineering Fracture Mechanics 43 (1992) 529–548.

    Article  Google Scholar 

  19. E. Riks, F.A. Brogan and C.C. Rankin, in Analytical and Computational Models of Shells, ASME-CED Vol. 3, A.K. Noor, T. Belytschko, and J.C. Simo (eds.) American Society of Mechanical Engineers, New York (1989) 483–507.

    Google Scholar 

  20. H. Ansell, Ph.D. thesis no. 138, Institute of Technology, Department of Mechanical Engineering, S-581 Linköping, Sweden, report no. LIU-TEK-LIC-1988:11 (1988).

  21. D.O. Potyondy, Ph.D. thesis, School of Civil and Environmental Engineering, Cornell University (1993).

  22. E.F. Rybicki and M.F. Kanninen, Engineering Fracture Mechanics 9 (1971) 931–938.

    Article  Google Scholar 

  23. S. Viswanath, H.V. Lakshminarayana and D.D. Ravindranath, International Journal of Fracture 41 (1989) R45-R50.

    Article  Google Scholar 

  24. A.T. Zehnder and C.-Y. Hui, Journal of Applied Mechanics 6 (1994) 719–722.

    Article  Google Scholar 

  25. B.O. Almroth, F.A. Brogan and G.M. Stanley, ‘Structural Analysis of General Shells,’ User Instructions for STAGSC-1, Vol. 2, Report No. LMSC D633873, Lockheed Missiles and Space Co., Palo Alto, California (1986).

    Google Scholar 

  26. C.C. Rankin and F.A. Brogan, The Computational Structural Mechanics Testbed Structural Element Processor ES5: STAGS Shell Element, NASA CR-4358, Lockheed Missiles and Space Co., Palo Alto, California (1991).

    Google Scholar 

  27. M.J. Viz, A.T. Zehnder and J.-D. Bamford, Fracture Mechanics: 26th Volume, ASTM STP 1256, W.G. Reuter, J.H. Underwood, and J.C. Newman, Jr. (eds.) Philadelphia, Pennsylvania (1995).

Download references

Author information

Authors and Affiliations

Authors

Additional information

School of Civil and Environmental Engineering, Cornell University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viz, M.J., Potyondy, D.O., Zehnder, A.T. et al. Computation of membrane and bending stress intensity factors for thin, cracked plates. Int J Fract 72, 21–38 (1995). https://doi.org/10.1007/BF00036927

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00036927

Keywords

Navigation