Skip to main content
Log in

IAA synthesis and root induction with iaa genes under heat shock promoter control

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We have devised a heat shock-inducible indole-3-acetic acid (IAA) synthesis system for plant cells, which is based on the iaa genes of the Agrobacterium tumefaciens T-DNA and the heat shock promoter hsp70 of Drosophila melanogaster.

Two DNA constructs were tested: one contains the iaaM gene linked to the hsp70 promoter (hsp 70-iaaM) and encodes the production of indoleacetamide (IAM), the other contains hsp 70-iaaM and the wild-type iaaH gene which codes for the conversion of IAM into IAA (hsp 70-iaaM/iaaH). Heat shock-controlled IAM and IAA synthesis was tested on two levels: biochemically by measuring IAM and IAA levels in Kalanchoe stem segments infected with the two constructs, and morphologically by IAA-dependent root formation on Kalanchoe plants, on carrot discs and on tobacco leaf fragments. At both levels the responses were found to be controlled by the heat shock promoter. IAM levels of segments infected with hsp 70-iaaM increased 6-fold upon heat shock induction to 240 pmol IAM per stem segment. The accumulation of IAA in segments infected with hsp 70-iaaM/iaaH and heat-shocked was found to be more variable, possibly due to IAA transport and metabolism. Heat shock treatment of Kalanchoe plants and tobacco leaf fragments infected with hsp 70-iaaM/iaaH led to a strong increase in root formation. On carrot discs, heat shock-specific root induction was also demonstrated, but the responses differed between individual carrots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbier-Brygoo H, Ephritikhine G, Klämbt D, Ghislain M, Guern J: Functional evidence for an auxin receptor at the plasmalemma of tobacco mesophyll protoplasts. Proc Natl Acad Sci; USA 86: 891–895 (1989).

    Google Scholar 

  2. Barker RF, Idler KB, Thompson DV, Kemp JD: Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pTi5955. Plant Mol Biol 2: 335–350 (1983).

    Google Scholar 

  3. Bonnard G, Tinland B, Paulus F, Szegedi E, Otten L: Nucleotide sequence, evolutionary origin and biological role of a rearranged cytokinin gene isolated from a wide host range biotype III Agrobacterium strain. Mol Gen Genet 216: 428–438 (1989).

    Article  PubMed  Google Scholar 

  4. Bonner J, Galston AW: Principles of Plant Physiology, Freeman, San Francisco (1952).

    Google Scholar 

  5. Caillet-Fauquet P, Maenhaut-Michel G, Radman M: SOS mutator effect in E. coli mutants deficient in mismatch correction. EMBO J 3: 707–712 (1984).

    PubMed  Google Scholar 

  6. Capone I, Spanò L, Cardarelli M, Bellincampi D, Petit A, Costantino P: Induction and growth properties of carrot roots with different complements of Agrobacterium rhizogenes T-DNA. Plant Mol Biol 13: 43–52 (1989).

    PubMed  Google Scholar 

  7. Cardarelli M, Spanò L, Mariotti D, Mauro ML, Costantino P: The role of auxin in hairy root induction. Mol Gen Genet 208: 457–463 (1987).

    Article  Google Scholar 

  8. Cohen JD: Identification and quantitative analysis of indole-3-acetyl-L-aspartate from seeds of Glycine max. Plant Physiol 70: 749–753 (1982).

    Google Scholar 

  9. Corcuera LJ, Bandurski RS: Biosynthesis of indole-3-acetyl-myo-inositol arabinoside in kernels of Zea mays L. Plant Physiol 70: 1664–1666 (1982).

    Google Scholar 

  10. Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, van Montagu M, Leemans J: Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucl Acids Res 13: 4777–4788 (1985).

    PubMed  Google Scholar 

  11. Depicker A, De Wilde M, De Vos R, van Montagu M, Schell J: Molecular cloning of overlapping segments of the nopaline Ti-plasmid pTiC58 as a means to restriction endonuclease mapping. Plasmid 3: 193–211 (1980).

    PubMed  Google Scholar 

  12. Dhaese P, De Greve H, Decraemer H, Schell J, van Montagu M: Rapid mapping of transposon insertion and deletion mutations in the large Ti-plasmids of Agrobacterium tumefaciens. Nucl Acids Res 7: 1837–1849 (1979).

    PubMed  Google Scholar 

  13. Glass NL, Kosuge T: Cloning of the gene for indole acetic-lysine synthetase from Pseudomonas syringae subsp. savastanoi. J Bacteriol 166: 598–603 (1986).

    PubMed  Google Scholar 

  14. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT: A simple and general method for transferring genes into plants. Science 227: 1229–1231 (1985).

    Google Scholar 

  15. Huss B, Bonnard G, Otten L: Isolation and functional analysis of a set of auxin genes with low root-inducing activity from an Agrobacterium tumefaciens biotype III strain. Plant Mol Biol 12: 271–283 (1989).

    Google Scholar 

  16. Huss B, Tinland B, Paulus F, Walter B, Otten L: Functional analysis of a complex oncogene arrangement in biotype III Agrobacterium tumefaciens strains. Plant Mol Biol 14: 173–186 (1990).

    PubMed  Google Scholar 

  17. Hutcheson SW, Kosuge T: Regulation of 3-indoleacetic acid production in Pseudomonas savastanoi pv. savastanoi. J Biol Chem 260: 6281–6287 (1985).

    PubMed  Google Scholar 

  18. Ingolia TD, Craig EA, McCarthy BJ: Sequences of three copies of the gene for the major drosophila heat shock induced protein and their flanking regions. Cell 21: 669–679 (1980).

    Article  PubMed  Google Scholar 

  19. Inzé D, Follin A, van Lijsebettens M, Simoens C, Genetello C, van Montagu M, Schell J: Genetic analysis of the individual T-DNA genes of Agrobacterium tumefaciens, further evidence that two genes are involved in indole-3-acetic acid synthesis. Mol Gen Genet 194: 265–274 (1988).

    Google Scholar 

  20. Jund R, Weber E, Chevallier M-R: Primary structure of the uracil transport protein of Saccharomyces cerevisiae. Eur J Biochem 171: 417–424 (1988).

    PubMed  Google Scholar 

  21. Knegt E, Bruinsma J: A rapid, sensitive and accurate determination of indolyl-3-acetic acid. Phytochemistry 12: 753–756 (1973).

    Article  Google Scholar 

  22. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning. Cold Spring Harbor Laboratory Press, New York (1982).

    Google Scholar 

  23. Medford JI, Horgan R, El-Sawi Z, Klee HJ: Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene. Plant Cell 1: 403–413 (1989).

    Article  PubMed  Google Scholar 

  24. McClure B, Hagen G, Brown C, Gee MA, Guilfoyle TJ: Transcription, organization, and sequence of an auxinregulated gene cluster in soybean. Plant Cell 1: 229–239 (1989).

    Article  PubMed  Google Scholar 

  25. Otten L: Lysopine dehydrogenase activity as an early marker in crown gall transformation. Plant Sci Lett 25: 15–27 (1982).

    Article  Google Scholar 

  26. Rüdelsheim P, Prinsen E, van Lijsebetten M, Inzé D, van Montagu M, De Greef J, van Onckelen H: The effect of mutations in the T-DNA encoded auxin pathway on the endogenous phytohormone content in cloned Nicotiana tabacum crown gall tissue. Plant Cell Physiol 28: 475–484 (1987).

    Google Scholar 

  27. Schmülling T, Beinsberger S, De Greef J, Schell J, van Montagu M, Spena A: Construction of a heat-inducible chimaeric gene to increase the cytokinin content in transgenic plant tissue. FEBS Lett 249: 401–406 (1989).

    Article  Google Scholar 

  28. Schöffl F, Bauman G, Raschke E, Bevan M: The expression of heat-shock genes in higher plants. Phil Trans R Soc Lond 314: 453–468 (1986).

    Google Scholar 

  29. Schröder G, Waffenschmidt S, Weiler EW, Schröder J: The T-region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur J Biochem 138: 387–391 (1984).

    PubMed  Google Scholar 

  30. Spena A, Hain R, Ziervogel U, Saedler H, Schell J: Construction of a heat-inducible gene for plants. Demonstration of heat-inducible activity of the Drosophila hsp70 promoter in plants. EMBO J 11: 2739–2743 (1985).

    Google Scholar 

  31. Vanderhoef LN, Dute RR: Auxin-regulated loosening and sustained growth in elongation. Plant Physiol 67: 146–149 (1981).

    Google Scholar 

  32. van Haute E, Joos H, Maes M, Warren E, van Montagu M, Schell J: Intergeneric transfer and exchange recombination of restriction fragments cloned in pBR322: a novel strategy for the reversed genetics of the Ti plasmids of Agrobacterium tumefaciens. EMBO J 2: 411–417 (1983).

    PubMed  Google Scholar 

  33. van Onckelen H, Rüdelsheim P, Inzé D, Follin A, Messens E, Horemans S, Schell J, van Montagu M, De Greef J: Tobacco plants transformed with the Agrobacterium T-DNA gene 1 contain high amounts of indole-3-acetamide. FEBS Lett 181: 373–376 (1985).

    Article  Google Scholar 

  34. van Onckelen H, Prinsen E, Chriqui D, Tepfer M, De Greef J: Endogenous auxin levels in normal and hairy root tobacco plants. Meded Fac Landbouwwet Rijksuniv Gent 53: 1685–1693 (1988).

    Google Scholar 

  35. Velten J, Schell J: Selection-expression plasmid vectors for use in genetic transformation of higher plants. Nucl Acids Res 13: 6981–6998 (1985).

    PubMed  Google Scholar 

  36. Venis MA: Auxin-induced conjugation systems in peas. Plant Physiol 49: 24–27 (1972).

    Google Scholar 

  37. Wöstemeyer A, Otten L, Schell J: Sexual transmission of T-DNA in abnormal tobacco regenerants transformed by octopine and nopaline strains of Agrobacterium tumefaciens. Mol Gen Genet 194: 500–507 (1984).

    Google Scholar 

  38. Wullems GJ, Molendijk L, Ooms G, Schilperoort RA: Retention of tumor markers in F1 progeny plants from in vitro induced octopine and nopaline tumor tissues. Cell 24: 719–727 (1981).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kares, C., Prinsen, E., Van Onckelen, H. et al. IAA synthesis and root induction with iaa genes under heat shock promoter control. Plant Mol Biol 15, 225–236 (1990). https://doi.org/10.1007/BF00036909

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00036909

Key words

Navigation