Skip to main content
Log in

A continuum damage mechanics approach to crack tip shielding in brittle solids

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This paper focuses firstly on the development of a comprehensive anisotropic theory of continuum damage mechanics for brittle solids suffering progressive deterioration. The basic concept of damage parameterization is re-examined and a new set of damage variables introduced yielding a new damage effect tensor through which the effective stress and strain tensors are defined. Constitutive equations of the damaged material are established incorporating a new hypothesis on equivalence between damaged and undamaged responses of the material. The model is completed by introduction of a general damage characteristic tensor which accounts for the experimentally observed fact that the rate of damage growth depends nonlinearly on applied external loads. The established damage model is next applied to investigate the crack-tip shielding effect due to anisotropic microcracking. The ratio of near-tip to remote stress intensity factors is obtained in closed form. A moderate but definite effect of anisotropy of microcracking is observed. The case of isotropic damage is found to be the least effective in screening remote external loads and is in accord with the results obtained by other researchers using different approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.G. Hoagland and J.D. Embury, Journal of American Ceramic Society 63 (1980) 404–410.

    Google Scholar 

  2. A.G. Evans and K.T. Faber, Journal of American Ceramic Society 64 (1981) 394–398.

    Google Scholar 

  3. Y. Fu and A.G. Evans, Acta Metallurgica 33 (1985) 1515–1523.

    Google Scholar 

  4. A.G. Evans and Y. Fu, Acta Metallurgica 33 (1985) 1525–1531.

    Google Scholar 

  5. M. Ortiz, Journal of Applied Mechanics 54 (1987) 54–58.

    Google Scholar 

  6. J.W. Hutchinson, Acta Metallurgica 35 (1987) 1605–1619.

    Google Scholar 

  7. M. Ortiz, International Journal of Solids and Structures 24 (1988) 231–250.

    Google Scholar 

  8. P. Charalambides and R.M. McMeeking, submitted for publication.

  9. R.G. Hoagland, G.T. Hahn and A.R. Rosenfield, Rock Mechanics (1973) 77–106.

  10. C.C. Wu, S.W. Freiman, R.W. Rice and J.J. Mecholsky, Journal of Materials Science 13 (1978) 2659–2670.

    Google Scholar 

  11. S. Mindess and S. Diamond, Cement and Concrete Research 10 (1980) 509.

    Google Scholar 

  12. A.R. Rosenfield and B.S. Majumdar, Metallurgical Transactions 18A (1987) 1053.

    Google Scholar 

  13. M.J. Owen, in Short Fiber Reinforced Composite Materials, B.A. Sanders (ed.), ASTM STP 772 (1982) 85.

  14. P.T. Curtis, M.G. Bader and J.E. Bailey, Journal of Materials Science 13 (1978) 377.

    Google Scholar 

  15. E.S.M. Chim, Ph.D dissertation, University of Illinois at Urbana-Champaign (1985).

  16. S. Jansson and U. Stigh, Journal of Applied Mechanics 52 (1985) 609.

    Google Scholar 

  17. J.R. Rice, in Fracture, H. Liebowitz (ed.), Vol. 2, Academic Press (1968) 191.

  18. L.M. Kachanov, Izvestiya Akademia Nauk USSR Otd. Tekh. 8 (1958) 26.

    Google Scholar 

  19. Y.N. Rabotnov, Creep Problems in Structural Members, North Holland Publishing Company (1969).

  20. F.A. Leckie and D.R. Hayhurst, Proceedings of the Royal Society of London A 340 (1974) 323–347.

    Google Scholar 

  21. S. Murakami, N. Ohno and D.R. Hayhurst, in IUTAM Symposium on Physical Nonlinearities in Structures, Springer, Berlin (1981) 422–444.

    Google Scholar 

  22. J. Lemaitre, Nuclear Engineering Design 80 (1984) 233–245.

    Google Scholar 

  23. F. Sidroff, in IUTAM Symposium on physical Nonlinearities in Structures, J. Hult and J. Lemaitre (eds.), Springer, Berlin (1981) 237–244.

    Google Scholar 

  24. J.P. Cordebois and F. Sidoroff, Journal de Mecanique Theorique et Appliquee, Numero Special (1980) 45–60.

  25. D. Krajcinovic, Journal of Applied Mechanics 52 (1983) 829–834.

    Google Scholar 

  26. C.L. Chow and J. Wang, International Journal of Fracture 33 (1987) 3–16.

    Google Scholar 

  27. C.L. Chow and J. Wang, Engineering Fracture Mechanics 27 (1987) 547–558.

    Google Scholar 

  28. J.L. Chaboche, Journal of Applied Mechanics 55 (1988) 59–72.

    Google Scholar 

  29. J. Betten, Journal de Mecanique Theorique et Appliquee 2 (1983) 13–32.

    Google Scholar 

  30. J. Lemaitre, Journal of Engineering Materials and Technology 107 (1985) 83–89.

    Google Scholar 

  31. D. Krajcinovic, Damage Mechanics and Continuum Modelling, N. Stubbs and D. Krajcinovic (eds.), ASCE Publications, New York (1985) 39.

    Google Scholar 

  32. S. Murakami, Journal of Applied Mechanics 55 (1988) 280–286.

    Google Scholar 

  33. R. Hill, The Mathematical Theory of Plasticity, Oxford University Press, Oxford (1950).

    Google Scholar 

  34. D.R. Bland, in Proceedings of the 9th International Congress of Applied Mechanics, Bruxelles (1956).

  35. C.L. Chow and J. Wang, Damage Mechanics in Composites, A.S.D. Wang and G.K. Haritos (eds.), The Winter Annual Meeting of ASME (1987) 1–9.

  36. J. Lemaitre, Engineering Fracture Mechanics 25 (1984) 725.

    Google Scholar 

  37. S.S. Wang, E.S.-M. Chim and H. Suemasu, Journal of Applied Mechanics 53 (1986) 339–346.

    Google Scholar 

  38. D.J. Holcomb, Journal of Rheology 28 (1984) 725.

    Google Scholar 

  39. J.W. Hutchinson, Acta Metallurgica 31 (1983) 1079–1088.

    Google Scholar 

  40. J.B. Martin and F.A. Leckie, Journal of the Mechanics and Physics of Solids 20 (1972) 227.

    Google Scholar 

  41. E.D. Case, Journal of Materials Science 19 (1984) 3702–3712.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chow, C.L., Lu, T.J. A continuum damage mechanics approach to crack tip shielding in brittle solids. Int J Fract 50, 79–114 (1991). https://doi.org/10.1007/BF00035206

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00035206

Keywords

Navigation