Skip to main content
Log in

High speed crack propagation in bi-phase materials: an experimental study

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

We have studied experimentally the high speed propagation of a crack perpendicular to an interface between materials with different mechanical properties. The tests presented in this paper were restricted to the case of a two-dimensional model, without debonding of the interfacial region. Cracks started at a notch machined in the first low modulus phase of the bi-phase single edge notch samples. Our investigations were focussed on the relation between the crack velocity in each phase and the mechanical state of the specimen. The results demonstrate a direct dependence of the crack velocity on the elastic energy stored in the specimen at the moment of crack initiation. For a given experimental situation, we show that the velocity of the crack in each phase and the occurrence of crack arrest can be predicted knowing the relative positions of the two curves crack speed vs. elastic energy for the two constituents of the “bimaterial”. For example, this permits the determination of the critical level of stored elastic energy which is necessary to obtain an acceleration of the crack at the interface, without arrest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.R. Zak and M.L. Williams, Transactions ASME, Journal of Applied Mechanics 30 (1963) 142–143.

    Google Scholar 

  2. M.L. Williams, Bulletin of the Seismological Society of America 49 (1959) 199–204.

    Google Scholar 

  3. D.O. Swenson and C.A. Rau, International Journal of Fracture Mechanics 6 (1970) 357–365.

    Google Scholar 

  4. T.S. Cook and F. Erdogan, International Journal of Engineering and Science 10 (1972) 677–697.

    Google Scholar 

  5. D.B. Bogy, Transactions ASME, Journal of Applied Mechanics 38 (1971) 911–918.

    Google Scholar 

  6. J.W. Dally and T. Kobayashi, International Journal of Solids and Structures 14 (1978) 121–129.

    Google Scholar 

  7. P.S. Theocaris and J. Milios, International Journal of Fracture 16 (1980) 31–51.

    Google Scholar 

  8. P.S. Theocaris and J. Milios, International Journal of Solids and Structures 17 (1981) 217–230.

    Google Scholar 

  9. P.S. Theocaris, Fibre Science and Technology 19 (1983) 157–177.

    Google Scholar 

  10. P.S. Theocaris and J. Milios, Journal of Reinforced Plastics and Composites 2 (1983) 18–28.

    Google Scholar 

  11. P.S. Theocaris and C.B. Demakos, International Journal of Fracture 32 (1986) 71–92.

    Google Scholar 

  12. P.S. Theocaris, M. Siarova and G.A. Papadopoulos, Journal of Reinforced Plastics and Composites 5 (1986) 23–50.

    Google Scholar 

  13. P.S. Theocaris and G.A. Papadopoulos, Journal of Reinforced Plastics and Composites 5 (1986) 120–140.

    Google Scholar 

  14. P.S. Theocaris and J. Milios, Engineering Fracture Mechanics 13 (1979) 599–609.

    Google Scholar 

  15. E.E. Gdoutos, International Journal of Solids and Structures 17 (1981) 683–685.

    Google Scholar 

  16. J.L. Huang, A.V. Virkar and R.J. Huber, in Fracture Mechanics of Ceramics, vol. 6, Plenum Press (1983) 121–135.

  17. B. Stalder, P. Béguelin and H.H. Kausch, International Journal of Fracture 22 (1983) R47-R50.

    Google Scholar 

  18. B. Stalder and H.H. Kausch, Journal of Materials Science 20 (1985) 2873–2881.

    Google Scholar 

  19. P. Béguelin, B. Stalder and H.H. Kausch, International Journal of Fracture 23 (1983) R7-R10.

    Google Scholar 

  20. B. Stalder, “Techniques expérimentales d'étude de la rupture fragile: développements et application aux polymères”, Thèse no 586, Ecole Polytechnique Fédérale de Lausanne (1985).

  21. B. Stalder, Ph. Beguelin, A.C. Roulin-Moloney and H.H. Kausch, Journal of Materials Science 24 (1989) 2262–2274.

    Google Scholar 

  22. D.P. Rooke and D.J. Cartwright, Compendium of Stress Intensity Factors, Her Majesty's Stationery Office (1976).

  23. D.O. Harris, Transactions ASME, Journal of Basic Engineering 89 (1987) 49–54.

    Google Scholar 

  24. N. Marchand, D.M. Parks and R.M. Pelloux, International Journal of Fracture 31 (1986) 53–65.

    Google Scholar 

  25. N. Marchand, personal communication (1988).

  26. W.J. Cantwell and A.C. Roulin-Moloney, International Journal of Fracture 35 (1987) R31-R39.

    Google Scholar 

  27. W.J. Cantwell, A.C. Roulin-Moloney and H.H. Kausch, Journal of Materials Science Letters 7 (1988) 976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cudré-Mauroux, N., Kausch, H.H., Cantwell, W.J. et al. High speed crack propagation in bi-phase materials: an experimental study. Int J Fract 50, 67–77 (1991). https://doi.org/10.1007/BF00035169

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00035169

Keywords

Navigation