Skip to main content
Log in

Three-dimensional finite element analysis of a crack normal to and terminating at a bi-material interface

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The objective of the present work is to investigate the interaction between interfaces and cracks normal to and terminating at a metal/alumina interface. The behavior is analyzed by the determination of the J integral and the plastic zone at the crack tip using the three-dimensional finite element methods. The effects of the thickness of the metal/alumina were highlighted. The obtained results allow us to deduce mathematical relations, giving the variation of the J integral and the plastic zone as a function of the crack position and the bi-materials thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zak AR, Williams ML (1963) Crack point stress singularities at a bi-material interface. J Appl Mech 30:142–143

    Article  Google Scholar 

  2. Bogy DB (1971) On the plane elastic problem of a loaded crack terminating a material interface. J Int Fract 38:911–918

    MATH  Google Scholar 

  3. Cook TS, Erdogan F (1972) Stress in bonded materials with a crack perpendicular to the interface. Int J Eng Sci 10:677–697

    Article  MATH  Google Scholar 

  4. Erdogan F, Biricikoglu V (1973) Two bonded half planes with a crack going through the interface. Int J Eng Sci 11:745–766

    Article  MATH  Google Scholar 

  5. Wang WC, Chen JT (1993) Theoretical and experimental re-examination of a crack at a bi-material interface. J Strain Anal 28:53–61

    Article  Google Scholar 

  6. Lin KY, Mar JW (1976) Finite element analysis of stress intensity factors for crack at a bi-material interface. Int J Fract 12:451–531

    Google Scholar 

  7. Ahmad J (1991) A micromechanics analysis of cracks in unidirectional fibre composite. J Appl Mech 58:964–969

    Article  Google Scholar 

  8. Tan M, Meguid SA (1969) Dynamic analysis of cracks perpendicular to bi-material interfaces using new singular finite element. Finite Elem Anal Des 22:69–83

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen DH (1994) A crack normal to and terminating at a bi-material interface. Eng Fract Mech 49:517–532

    Article  Google Scholar 

  10. Chen SH, Wang TC, Kao-Walter S (2003) A crack perpendicular to the bi-material interface in finite solid. Int J Solids Struct 40:2731–2755

    Article  MATH  Google Scholar 

  11. He MY, Hutchinson JW (1993) Crack deflection at an interface between dissimilar elastic materials. Int J Solids Struct 25:1053–1067

    Google Scholar 

  12. Chang J, Xu JQ (2007) The singular stress field and stress intensity factors of a crack terminating at a bi-material interface. Int J Mech Sci 49:888–897

    Article  Google Scholar 

  13. Lin YY, Sung JC (1997) Singularities of an inclined crack terminating at an anisotropic bi-material interface. Int J Solids Struct 38:3727–3754

    Article  MATH  Google Scholar 

  14. Wang TC, Stahle P (1998) Stress state in front of a crack perpendicular to bi-material interface. Eng Fract Mech 4:471–485

    Google Scholar 

  15. Wang TC, Stahle P (1998) A crack perpendicular to and terminating at a bi-material interface. Acta Mech Sinica 14:27–36

    Google Scholar 

  16. Suo ZG (1989) Singularities interacting with interface and cracks. Int J Solids Struct 25:1133–1142

    Article  Google Scholar 

  17. Gupta V, Yuan J, Martinez D (1993) Calculation, measurement, and control of interface strength in composites. J Am Ceram Soc 76:305–315

    Article  Google Scholar 

  18. Li R, Chudnovsky A (1993) Variation of the energy release rate as a crack approaches and passes through an elastic inclusion. Int J Fract 59:R69–R74

    Google Scholar 

  19. Meguid SA, Tan M, Zhu ZH (1995) Analysis of cracks perpendicular to bi-material interfaces using a novel finite element. Int J Fract 73:1–23

    Article  Google Scholar 

  20. Marsavina L, Sadowski T, Faur N (2011) Numerical investigation of the stress field near a crack normal to ceramic–metal interface. J Mech Sci Technol 25:309–315

    Article  Google Scholar 

  21. Marsavina L, Sadowski T, Faur N (2010) Asymptotic stress field for a crack normal to a ceramic-metal interface. Key Eng Mater 417:489–492

    Google Scholar 

  22. Kaddouri K, Belhouari M, Bachir Bouiadjra B, Serier B (2006) Finite element analysis of crack perpendicular to bi-material interface: case of couple ceramic-metal. Comput Mater Sci 35:53–60

    Article  Google Scholar 

  23. Madani K, Belhouari M, Bachir Bouiadjra B, Serier B, Benguediab M (2007) Crack deflection at an interface of alumina/metal joint: a numerical analysis. Comput Mater Sci 38:625–630

    Article  Google Scholar 

  24. Zhang W, Deng X (2007) Elastic fields around the cohesive zone of a mode III crack perpendicular to a bi-material interface. J Appl Mech 74:1049–1052

    Article  Google Scholar 

  25. Suresh S, Sugimura Y, Tschegg EK (1992) The growth of a fatigue crack approaching a perpendicularly-oriented, bi-material interface. Scr Metall Mater 27:1189–1194

    Article  Google Scholar 

  26. Sugimura Y, Lim PG, Shih CF, Suresh S (1995) Fracture normal to a bi-material interface: effects of plasticity on crack-tip shielding and amplification. Acta Metall Mater 43:1157–1169

    Article  Google Scholar 

  27. Kim AS, Besson J, Pineau A (1999) Global and local approaches to fracture normal to interfaces. Int J Solids Struct 36:1845–1864

    Article  MATH  Google Scholar 

  28. Kim AS, Suresh S, Shih CF (1997) Plasticity effects on fracture normal to interfaces with homogeneous and graded compositions. Int J Solids Struct 34:3415–3432

    Article  MATH  Google Scholar 

  29. Pippan R, Flechsig K, Reimelmoser FO (2000) Fatigue crack propagation behavior in the vicinity of an interface between materials with different yield stresses. Mater Sci Eng A 283:225–233

    Article  Google Scholar 

  30. Jiang F, Deng ZL, Zhao K, Sun J (2003) Fatigue crack propagation normal to a plasticity mismatched bi-material interface. Mater Sci Eng A 356:258–266

    Article  Google Scholar 

  31. Wang B, Siegmund T (2006) Simulation of fatigue crack growth at plastically mismatched bi-material interfaces. Int J Plast 22:1586–1609

    Article  MATH  Google Scholar 

  32. Predan J, Gubeljak N, Kolednik O (2007) On the local variation of the crack driving force in a double mismatched weld. Eng Fract Mech 74:1739–1757

    Article  Google Scholar 

  33. Narayanan S (2011) A computational model and experimental validation of shielding and amplifying effects at a crack tip near perpendicular strength-mismatched interfaces. Acta Mech 216:259–279

    Article  MATH  Google Scholar 

  34. Reimelmoser FO, Pippan R (2000) The J-integral at Dugdale cracks perpendicular to interfaces of materials with dissimilar yield stresses. Int J Fract 103:397–418

    Article  Google Scholar 

  35. ABAQUS Standard Version 6.9 (2007) User’s manual. Karlson & Sorensen, Inc, Hibbitt

    Google Scholar 

  36. Zhong XC, Li XF, Lee KY (2009) Analysis of a mode-I crack perpendicular to an imperfect interface. Int J Solids Struct 46:1456–1463

    Article  MATH  Google Scholar 

  37. Li FZ, Shih CF, Needleman A (1985) A comparaison of methods for calculating energy release rate. Eng Fract Mech 21:405

    Article  Google Scholar 

  38. Shih CF, Moran B, Nakamura T (1986) Energy release rate along a three dimensional crack front in a thermally stressed body. Int J Fract 30:79–102

    Google Scholar 

  39. Amiri A, Belhouari M, Bounoua N, Achour T, Bachir Bouiadjra B (2013) Three-dimensional finite element analysis of thin films cracking along ceramic substrates. Mech Res Commun 47:1–5

    Article  Google Scholar 

  40. Belhouari M, Amiri A, Mehidi A, Madani K, Bachir Bouiadjra B (2014) Elastic–plastic analysis of interaction between an interface and crack in bi-materials. Int J Damage Mech 23:299–326

    Article  Google Scholar 

  41. Dundurs J (1969) Effect of elastic constants on stress in a composite under plane deformation. J Compos Mater 1:310–322

    Google Scholar 

  42. Cirello A, Zuccarello B (2006) On the effects of a crack propagating toward the interface of a bi-material system. Eng Fract Mech 73:1264–1277

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Belhouari.

Additional information

Technical Editor: Lavinia Maria Sanabio Alves Borges.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehidi, A., Kaddouri, K., Belhouari, M. et al. Three-dimensional finite element analysis of a crack normal to and terminating at a bi-material interface. J Braz. Soc. Mech. Sci. Eng. 37, 1785–1792 (2015). https://doi.org/10.1007/s40430-014-0264-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-014-0264-6

Keywords

Navigation