Skip to main content
Log in

Variational approach for a new direct-integration form of the virtual crack extension method

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A new direct-integration technique for the virtual crack extension method which employs variational theory in the finite element formulation is presented. Similar techniques to derive explicit integral forms of the energy release rate have been introduced by deLorenzi [1] and Haber and Koh [2]; however, the formulation proposed here not only provides accurate results but also is simpler and more general than the earlier forms. Moreover, this method can be extended to derive higher order derivatives of the energy release rate, e.g., the rates of the energy release rate for mixed-mode fracture. With Betti's theorem and the mutual energy concept [3], a simple but effective uncoupling technique for mixed-mode stress intensity factors is also possible. Combined with the higher order derivatives of the energy release rate, this uncoupling technique can be used to derive the first derivatives of the stress intensity factors which in turn can be employed for better prediction of crack stability and rate of propagation.

Résumé

On présente une nouvelle technique par intégration directe relative à la méthode d'extension virtuelle d'une fissure, qui recourt à une approche par variations de la formulation des éléments finis. Delorenzi, et Haber et Koh, ont déjà présenté des techniques similaires en vue de déduire la vitesse de relaxation de l'énergie sous forme d'intégrales explicites. Toutefois, la formulation présentée ici non seulement procure des résultats exacts, mais en outre est d'un usage plus simple et plus général que les précédentes. En outre, la méthode permet une extension pour déduire des dérivées d'ordre supérieur de la vitesse de relaxation de l'énergie, notamment les vitesses relatives à des ruptures de mode mixte. En recourant au théorème de Batti et au concept d'énergie mutuelle, il est également possible d'appliquer une technique de découplage effectif pour des facteurs d'intensité de contraintes relatifs à un mode mixte. Combiné aux dérivées d'ordre supérieur pour la vitesse de relaxation de l'énergie, cette technique de découplage peut être employée pour déduire les dérivées premières des facteurs d'intensité de contraintes, lesquelles peuvent être à leur tour utilisées à une meilleure prédiction de la stabilité d'une fissure et de sa vitesse de propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.G. deLorenzi, Engineering Fracture Mechanics 21 (1985) 129–143.

    Article  Google Scholar 

  2. R.B. Haber and H.M. Koh, International Journal for Numerical Methods in Engineering 21 (1985) 301–315.

    Google Scholar 

  3. J.F. Yau, S.S. Wang, and H.T. Corten, Journal of Applied Mechanics 47 (1980) 335–341.

    Google Scholar 

  4. J.R. Dixon and L.P. Pook, Nature 224 (1969) 166–167.

    Google Scholar 

  5. V.B. WatwoodJr., Nuclear Engineering and Design 11 (1969) 323–332.

    Article  Google Scholar 

  6. T.K. Hellen, “The Finite Element Calculations of Stress Intensity Factors Using Energy Techniques”, 2nd International Conference on Structural Mechanics in Reactor Technology, Paper G5/3, Berlin, Germany 1973.

  7. T.K. Hellen and W.S. Blackburn, International Journal of Fracture 11 (1975) 605–617.

    Google Scholar 

  8. T.K. Hellen, International Journal for Numerical Methods in Engineering 9 (1975) 187–207.

    Google Scholar 

  9. D.M. Parks, International Journal of Fracture 10 (1974) 487–502.

    Google Scholar 

  10. D.M. Parks, in Proceedings of the 1st International Conference on Numerical Methods in Fracture Mechanics (1978) 464–486.

  11. M.L. Vanderglas, International Journal of Fracture 14 (1978) R291-R293.

    Google Scholar 

  12. G.T. Sha, Engineering Fracture Mechanics 19 (1984) 685–699.

    Article  Google Scholar 

  13. R.M. WalshJr. and R.B. Pipes, Engineering Fracture Mechanics 22 (1985) 17–33.

    Google Scholar 

  14. L. Banks-Sills and D. Sherman, International Journal of Fracture 32 (1986) 127–140.

    Article  Google Scholar 

  15. H. Ishikawa, International Journal of Fracture 16 (1980) 243–246.

    Article  Google Scholar 

  16. H. Ishikawa, H. Kitagawa, and H. Okamura, in 3rd International Conference on Mechanical Behaviour of Materials, Cambridge, England (1979) 447–455.

  17. M.L. Vanderglas and R.J. Pick, in Fracture, 3, 4th International Conference on Fracture, Waterloo, Canada (1977) 501–506.

  18. G.T. Sha and C.-T. Yang, Engineering Fracture Mechanics 21 (1985) 1119–1149.

    Google Scholar 

  19. M. Stern, E.B. Becker, and R.S. Dunham, International Journal of Fracture 12 (1976) 359–368.

    Google Scholar 

  20. W.K. Wilson, “Combined-Mode Fracture Mechanics”, Ph.D. dissertation, University of Pittsburgh (1969).

  21. H. Tada, P. Paris, and G. Irwin, The Stress Analysis of Cracks Handbook, Del Research Corporation, Hellertown, Pennsylvania (1973).

    Google Scholar 

  22. S.C. Lin, “Numerical Simulation of Through-crack Propagation in General Shells by Energy Integrations” Ph.D. dissertation, Cornell University (1988).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, SC., Abel, J.F. Variational approach for a new direct-integration form of the virtual crack extension method. Int J Fract 38, 217–235 (1988). https://doi.org/10.1007/BF00034286

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00034286

Keywords

Navigation