Skip to main content
Log in

Variation of fracture toughness of a 7075 aluminium alloy with hydrostatic pressure and relationship with tensile ductility

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The mechanical properties of a 7075 aluminium alloy were tested under hydrostatic pressure from atmospheric pressure to 600 MPa. Cylindrical tension specimens, plane strain tension specimens, pre-cracked bend and compact tension specimens were used. The elastic modulus was measured with ultrasonic waves. Several orientations with respect to the rolling direction were investigated. Young's modulus, the elastic limit, and the strain hardening coefficient increased only slightly with pressure. Both tensile and plane strain ductility were greatly enhanced under pressure. The fracture toughness increased with pressure. From the variation of the plane strain ductility the fracture stress of the interface between the void nucleating inclusions and the matrix could be evaluated to be about 3000 MNm-2 in the short transverse direction and 9000 MNm-2 in other directions. The variation of the fracture toughness could be related with the plane strain ductility according to either the model of Broek or the model of Hahn and Rosenfield. Rice's hypothesis relating the critical COD to the mean distance between void nucleating particles could also provide a satisfactory explanation for the enhancement of fracture toughness under pressure.

Résumé

Les propriétés mécaniques d'un alliage d'aluminium AZ5GU ont été mesurées sous pression hydrostatique jusqu'à 600 MPa. Les échantillons utilisés étaient des éprouvettes cylindriques de traction, des éprouvettes de traction en déformation plane, des éprouvettes préfissurées en flexion trois points et en traction. Les modules élastiques ont été mesurés par ultra-sons. Plusieurs orientations, par rapport à la direction de laminage, ont été étudiées. Le module d'Young, la limite d'élasticité, le coefficient d'écrouissage augmentent très peu avec la pression. La ductilité mesurée en traction uniaxiale comme en déformation plane augmentent beaucoup sous pression. La ténacité à la rupture augmente avec la pression. D'après la variation de la ductilité en déformation plane, la contrainte de rupture à l'interface entre les inclusions donnant naissance aux cupules et la matrice, a pu être évaluée à environ 3000 MNm-2 dans le travers court et 9000 MNm-2 dans les autres directions. La direction de la ténacité à la rupture a pu être reliée à la ductilité en déformation plane en suivant soit le modèle de Broek, soit le modèle de Hahn et Rosenfield. L'hypothèse de Rice reliant le déplacement critique à l'extrémité de la fissure à la distance moyenne entre les particules, procure aussi une explication satisfaisante de l'augmentation de la ténacité sous pression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ll. D. Pugh, ed., Mechanical Behavior of Materials under Pressure, Elsevier Publ. Co., Amsterdam-London-New York (1970).

    Google Scholar 

  2. J. P. Auger and D. François, Revue de Physique Appliquée, 9 (July 1974) 637.

    Google Scholar 

  3. J.M. Barsom, ASME Transactions, Journal of Engineering, Ind. Series B 93 (1971) 1209.

    Google Scholar 

  4. D. P. Clausing, International Journal of Fracture Mechanics, 6 (1970) 71.

    Article  Google Scholar 

  5. D. Carpentier and M. Contre, Review of Scientific Instruments, 41 (1970) 189.

    Article  Google Scholar 

  6. P. Vigier, Revue de l'Aluminium, 417 (1973) 219.

    Google Scholar 

  7. D. François, J. P. Poirier and Y. Adda, Ann. Phys., 5 (1970) 291–302.

    Google Scholar 

  8. D. Bedere, D. François, C. Jamard and A. Jarlaud, Acta Metallurgica, 19 (Sept. 1971) 973.

    Article  Google Scholar 

  9. S. V. Radcliffe, in Mechanical Behavior of Materials under Pressure, H. Ll. D. Pugh, ed., Elsevier Publ. Co., Amsterdam-London-New York (1970) 638.

    Google Scholar 

  10. A. S. Argon, J. Im and R. Safoglu, in Ductile Fracture, 3rd International Conference on Fracture, Munich (1973).

  11. J. M. Barsom and J. V. Pellegrino, Engineering Fracture Mechanics, 5 (1973) 209.

    Article  Google Scholar 

  12. D. Broek, Engineering Fracture Mechanics, 5 (1973) 55.

    Article  Google Scholar 

  13. G. T. Hahn and A. R. Rosenfield, in “Applications related phenomena in titanium and its alloys,” ASTM Special Technical Publication, 432 (1967) 5.

  14. J. Malkin and A. S. Tetelman, in La Rupture des Métaux, Masson et Co., Paris (1972) 209.

    Google Scholar 

  15. J. R. Rice and M. A. Johnson, in Elastic Behavior of Solids, McGraw-Hill, New York (1970).

    Google Scholar 

  16. D. Aurich, Engineering Fracture Mechanics, 7 (1975) 761.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auger, J.P., François, D. Variation of fracture toughness of a 7075 aluminium alloy with hydrostatic pressure and relationship with tensile ductility. Int J Fract 13, 431–441 (1977). https://doi.org/10.1007/BF00034245

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00034245

Keywords

Navigation