Skip to main content
Log in

The determination of fracture toughness for a porous elastic-plastic solid

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The near tip stress and porosity fields in a plane strain mode I crack under small scale yielding (s.s.y.) conditions have been studied using a constitutive model for porous elastic-plastic solids. These fields have been used in conjunction with criteria for fracture of tensile specimens to predict values of KIc for a mild steel over a range of temperatures. The regimes of dominance of fracture by slip-induced cleavage and void coalescence mechanisms have been determined. The predictions are shown to compare well with experimental data.

Résumé

On a étudié les champs de porosités et des contraintes au voisinage de l'extrémité d'une fissure soumise à un état plan de déformation de Mode I et présentant des conditions de plastification à faible échelle, en faisant appel à un modèle constitutif pour les solides élasto-plastiques. Ces champs sont utilisés en combinaison avec les critères de rupture d'éprouvettes de traction, afin de prédire les valeurs de K Ic d'un acier doux dans une certaine gamme de température.

On détermine les conditions de prépondérance dans la rupture des mécanismes de coalescence des lacunes et de clivages entrainés par glissement. II se trouve que les prédictions concordent bien avec les résultats expérimentaux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.F. Ashby: in Fracture Mechanics, Current Status, Future Prospects, Pergamon Press (1979) 1–27.

  2. C.D. Beachem. Transactions of the American Society of Metals 56 (1963) 318–326.

    Google Scholar 

  3. C.D. Beachem and G.R. Yoder: Metallurgical Transactions 4 (1973) 1145–1153.

    Google Scholar 

  4. K-H. Schwalbe: Engineering Fracture Mechanics 9 (1977) 795–832.

    Article  Google Scholar 

  5. G.E. Pellissier: Engineering Fracture Mechanics 1 (1968) 55–75.

    Article  Google Scholar 

  6. G. Green and J.F. Knott: Journal of Engineering Materials and Technology 75-MAT-10 (1976) 37–46.

    Google Scholar 

  7. J.R. Rice and D.M. Tracey: Journal of the Mechanics and Physics of Solids 17 (1969) 201–217.

    Article  Google Scholar 

  8. A.L. Gurson: Journal of Engineering Materials and Technology 76-MAT-CC (1977) 2–15.

    Google Scholar 

  9. H. Yamamoto: International Journal of Fracture 14 (1978) 347–365.

    Article  Google Scholar 

  10. V. Tvergaard: International Journal of Fracture 17 (1981) 389–407.

    Google Scholar 

  11. M. Saje, J. Pan and A. Needleman: International Journal of Fracture 19 (1982) 163–182.

    Article  Google Scholar 

  12. J. Pan, M. Saje and A. Needleman: International Journal of Fracture 21 (1983) 261–278.

    Google Scholar 

  13. R.M. McMeeking and J.R. Rice. International Journal of Solids and Structures 11 (1975) 601–616.

    Article  Google Scholar 

  14. S. Aoki, K. Kishimoto, A. Takeya and M. Sakata: International Journal of Fracture 24 (1984) 267–278.

    Google Scholar 

  15. R.M. McMeeking: Journal of the Mechanics and Physics of Solids 25 (1977) 357–381.

    Article  Google Scholar 

  16. N. Aravas and R.M. McMeeking: Journal of the Mechanics and Physics of Solids 33 (1985) 25–49.

    Article  Google Scholar 

  17. N. Aravas and R.M. McMeeking: International Journal of Fracture 29 (1985) 21–38.

    Google Scholar 

  18. R.O. Ritchie, J.F. Knott and J.R. Rice: Journal of the Mechanics and Physics of Solids 21 (1973) 395–410.

    Article  Google Scholar 

  19. E. Smith: International Journal of Fracture Mechanics 4 (1968) 131–145.

    Google Scholar 

  20. J.R. Rice and G.F. Rosengren: Journal of the Mechanics and Physics of Solids 16 (1968) 1–12.

    Article  Google Scholar 

  21. J.W. Hutchinson: Journal of the Mechanics and Physics of Solids 16 (1968) 13–31.

    Article  Google Scholar 

  22. G. LeRoy, J.D. Embury, G. Edwards and M.F. Ashby: Acta Metallurgica 29 (1981) 1509–1522.

    Article  Google Scholar 

  23. J.R. Rice: International Journal of Fracture Mechanics 2 (1966) 426–447.

    Article  Google Scholar 

  24. F.M. Beremin: Metallurgical Transactions 12A (1981) 723–731.

    Google Scholar 

  25. S.H. Goods and L.M. Brown: Acta Metallurgica 27 (1979) 1–15.

    Article  Google Scholar 

  26. P.F. Thomason: Journal of the Institute for Metals 98 (1968) 360–371.

    Google Scholar 

  27. J.R. Rice: in The Mechanics of Fracture, F. Erdogan (ed.), ASME AMD 19 (1976) 23–53.

  28. C.F. Shih: Tables of Hutchinson-Rice-Rosengren Singular Field Quantities, Materials Research Laboratories, Brown University, MRL E-147 (1983).

  29. F.A. McClintock: Journal of Applied Mechanics 35 (1968) 363–371.

    Google Scholar 

  30. A. Needleman: Computers and Structures 20 (1985) 247–257.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jagota, A., Hui, C.Y. & Dawson, P.R. The determination of fracture toughness for a porous elastic-plastic solid. Int J Fract 33, 111–124 (1987). https://doi.org/10.1007/BF00033743

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00033743

Keywords

Navigation