Skip to main content
Log in

Short-term phosphate uptake kinetics in Zostera noltii Hornem: a comparison between excised leaves and sediment-rooted plants

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Short-term phosphate uptake by excised leaves of Zostera noltii Hornem. as well as by leaves of sediment-rooted plants were characterized and compared in a kinetic framework. Time courses of phosphate disappearance were measured over a wide range of initial substrate concentrations. Phosphate uptake determined by this perturbation method did not follow Michaelis-Menten kinetics. Both excised leaves and sediment-rooted plants exhibited a biphasic uptake pattern as a function of phosphate concentration. However, rooted plants showed higher uptake rates and accumulated higher amounts of phosphate than excised leaves. The results point out the importance of the structural and functional coupling between shoots and underground parts during the nutrient foliar uptake processes. Our study also indicates that Zostera noltii leaves function as a phosphate sink in the water column.

A second objective of this work is to compare the perturbation and the multiple flask methods in determining the uptake kinetic parameters. The obtained results support that both methods provide valuable and complementary information in determining the uptake rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bieleski, R. L., 1973. Phosphate pools, phosphate transport, and phosphate availability. Ann. Rev. Pl. Physiol. 24: 225–252.

    Article  Google Scholar 

  • Bieleski, R. L. & B. Ferguson, 1983. Physiology and metabolism of phosphate and its compounds. In Lauchli, A. & R. L. Bieleski (eds), Encyclopedia of Plant Physiology. Springer. New York. (15A). 423–449.

    Google Scholar 

  • Brinkhuis, B. H., W. F. Penello & A. C. Churchill, 1980. Cadmium and manganese flux in eelgrass Zostera marina II. Metal uptake by leaf and root-rhizome tissues. Mar. Biol. 58: 187–196.

    Google Scholar 

  • Brix, H. & J. E. Lyngby, 1985. Uptake and translocation of phosphorus in eelgrass (Zostera marina L.). Mar. Biol. 90: 111–116.

    Google Scholar 

  • Carignan, R. & J. Kalff, 1979. Quantification of the sediment phosphorus available to aquatic macrophytes. J. Fish. Res. Bd Can. 36: 1002–1005.

    Google Scholar 

  • Carignan, R., 1982. An empirical model to estimate the relative importance of roots in phosphorus uptake by aquatic macrophytes. Can. J. Fish. aquat. Sci. 39: 243–247.

    Google Scholar 

  • Clarkson, D. T., 1974. Ion transport and cell structure in plants. McGraw Hill, New York.

    Google Scholar 

  • Clavero, V., F. F. X. Niell & J. A. Fernández, 1991. Effects of Nereis diversicolor O. F. Muller abundance on the dissolved phosphate exchange between sediment and overlying water in Palmones river estuary (Southern Spain). Estuar. coast. Shelf Sci. 33: 193–202.

    Google Scholar 

  • Cochlan, W. P. & P. J. Harrison, 1991. Uptake of nitrate, ammonium and urea by nitrogen-starved cultures of Micromonas pusilla (Prasinophyceae): transient responses. J. Phycol. 27: 673–679.

    Article  Google Scholar 

  • Cogliatti, D. H. & G. E. Santa Maria, 1990. Influx and efflux of phosphorus in roots of wheat plants in non-growth-limiting concentrations of phosphorus. J. exp. Bot. 41: 601–607.

    Google Scholar 

  • Conway, H. L., P. J. Harrison & C. O. Davis, 1976. Marine diatoms grown in chemostats under silicate or ammonium limitation. II. Transient response of Skeletonema costatum to a single addition of the limiting nutrient. Mar. Biol. 35: 187–199.

    Google Scholar 

  • D'Elia, C. F. & J. A. DeBoer, 1978. Nutritional studies of two red algae. II. Kinetics of ammonium and nitrate uptake. J. Phycol. 14: 266–272.

    Google Scholar 

  • Edwards, G. & D. A. Walker, 1983. C3, C4: mechanisms, cellular and environmental regulation of photosynthesis. BSP. Oxford.

    Google Scholar 

  • Elliott, G. C., J. Lynch & A. Lauchli, 1984. Influx and efflux of P in roots of intact maize plants. PI Physiol. 76: 336–341.

    Google Scholar 

  • Epstein, E., 1972. Mineral nutrition of plants: Principles and perspectives. Willey, New York.

    Google Scholar 

  • Faraday, W. E. & A. C. Churchill, 1979. Uptake of cadmium by the eelgrass Zostera marina. Mar. Biol. 53: 293–298.

    Google Scholar 

  • Fernández, J. A., F. X. Niell & J. Lucena, 1985. A rapid and sensitive automated determination of phosphate in natural waters. Limnol. Oceanogr. 30: 227–230.

    Google Scholar 

  • Fujita, R. M., 1985. The role of nitrogen status in regulating transient ammonium uptake and nitrogen storage by macroalgae. J. exp. mar. Biol. Ecol. 92: 283–301.

    Article  Google Scholar 

  • Goldman, J. C., C. D. Taylor & P. M. Glibert, 1981. Nonlinear time-course uptake of carbon and ammonium by marine phytoplankton. Mar. Ecol. Prog. Ser. 6: 137–148.

    Google Scholar 

  • Goldman, J. C. & P. M. Gilbert, 1982. Comparative rapid ammonium uptake by four species of marine phytoplankton. Limnol. Oceanogr. 27: 814–827.

    Google Scholar 

  • Granéli, W. & D. Solander, 1988. Influence of aquatic macrophytes on phosphorus cycling in lakes. Hydrobiologia 170: 245–266.

    Google Scholar 

  • Guillard, R. R. L. & J. H. Rhyter, 1962. Studies on marine planktonic diatoms. I. Cyclotella nana (Hustedt) and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8: 229–239.

    PubMed  Google Scholar 

  • Harrison, P. J. & D. L. Druehl, 1982. Nutrient uptake and growth in the Laminariales and other macrophytes: a consideration of methods. In Srivastava, L. M. (ed.) Synthetic and Degradative Processes in Marine Macrophytes. Walter de Gruyter, Berlin: 99–120.

    Google Scholar 

  • Harrison, P. J., J. S. Parslow & H. L. Conway, 1989. Determination of nutrient uptake kinetic parameters: a comparison of methods. Mar. Ecol. Prog. Ser. 52: 301–312.

    Google Scholar 

  • Hemminga, M. A., P. G. Harrison & F. van Lent, 1991. The balance of nutrient losses and gains in seagrass medows. Mar. Ecol. Progr. Ser. 71: 85–96.

    Google Scholar 

  • Iizumi, H. & A. Hattori, 1982. Growth and organic production of eelgrass (Zostera marina L.) in temperate waters of the Pacific coast of Japan. III. The kinetics of nitrogen uptake. Aquat. Bot. 12: 245–256.

    Article  Google Scholar 

  • Jacobs, R. P. W. M., 1979. Distribution and aspects of the production and biomass of eelgrass, Zostera marina L., at Roscoff, France. Aquat. Bot. 7: 151–172.

    Article  Google Scholar 

  • Jiménez, C., F. X. Niell & P. Algarra, 1987. Photosynthetic adaptation of Zostera noltii Hornem. Aquat. Bot. 29: 217–226.

    Article  Google Scholar 

  • Kikuchi, T., 1980. Faunal relationships in temperate seagrass beds. In Phillips, R. C. & C. P. McRoy (eds), Handbook of Seagrass Biology. An Ecosystem Perspective. Garland STPM Press, New York: 153–172.

    Google Scholar 

  • Kirk, J. T. O., 1983. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press.

  • Lefebvre, D. D. & A. D. M. Glass, 1982. Regulation of phosphate influx in barley roots: effects of phosphate deprivation and reduction of influx with provision of orthophosphate. Physiol. Plant. 54: 199–206.

    Google Scholar 

  • Lehman, J. T. & C. D. Sandgren, 1982. Phosphorus dynamics of the procaryotic nannoplankton in a Michigan lake. Limnol. Oceanogr. 27: 828–838.

    Google Scholar 

  • McCarthy, J. J. & J. C. Goldman, 1979. Nitrogenous nutrition of marine phytoplankton in nutrient-depleted waters. Science 203: 670–672.

    Google Scholar 

  • McRoy, C. P. & R. J. Barsdate, 1970. Phosphate absorption in eelgrass. Limnol. Oceanogr. 15: 6–13.

    Google Scholar 

  • McRoy, C. P. & J. J. Goering, 1974. Nutrient transfer between the seagrass Zostera marina and its epiphytes. Nature 258: 173–174.

    Google Scholar 

  • McRoy, C. P. & C. McMillan, 1977. Production ecology and physiology of seagrasses. In McRoy, C. P. & C. Helfferich (eds), Seagrass Ecosystems: A Scientific Perspective. Marcel Dekker, N.Y.: 53–88.

    Google Scholar 

  • Parslow, J. S., P. J. Harrison & P. A. Thompson, 1984b. Development of rapid ammonium uptake during starvation of batch and chemostat cultures of the marine diatom Thalassiosira pseudonana. Mar. Biol. 83: 43–50.

    Google Scholar 

  • Parslow, J. S., P. J. Harrison & P. A. Thompson, 1984c. Saturated uptake kinetics. transient response of the marine diatom Thalassiosira pseudonana to ammonium, nitrate, silicate or phosphate starvation. Mar. Biol. 83: 51–59.

    Google Scholar 

  • Parslow, J. S., P. J. Harrison & P. A. Thompson, 1985b. Interpreting rapid changes in uptake kinetics in the marine diatom Thalassiosira pseudonana (Hustedt). J. exp. mar. Biol. Ecol. 91: 53–64.

    Article  Google Scholar 

  • Patriquin, D., 1972. The origin of nitrogen and phosphorus for growth of the marine angiosperm Thalassia testudinum. Mar. Biol. 15: 35–46.

    Google Scholar 

  • Penhale, P. A. & G. N. Thayer, 1980. Uptake and transfer of carbon and phosphorus by eelgrass (Zostera marina L.) and its epiphytes. J. exp. mar. Biol. Ecol. 42: 113–123.

    Article  Google Scholar 

  • Pérez-Lloréns, J. L., 1991. Estimaciones de biomasa y contenido interno de nutrientes, ecofisiologia de incorporación de carbono y fosfato en Zostera noltii Hornem. PhD Thesis. University of Málaga.

  • Pérez-Lloréns, J. L. & F. X. Niell, 1989. Emergence and submergence effects on the distributional pattern and exchange of phosphorus in the seagrass Zostera noltii Hornem. Scient. Mar. 53: 497–503.

    Google Scholar 

  • Pérez-Lloréns, J. L., P. de Visscher, P. H. Nienhuis & F. X. Niell, 1993. Light-dependent uptake, translocation and foliar release of phosphorus by the intertidal seagrass Zostera noltii Hornem. J. exp. mar. Biol. Ecol. 166: 165–174.

    Article  Google Scholar 

  • Pérez-Lloréns, J. L. & F. X. Niell, 1993. Seasonal dynamics of biomass and nutrient content in the intertidal seagrass Zostera noltii Hornem. from Palmones river estuary, Spain. Aquat. Bot. 46: 49–66.

    Article  Google Scholar 

  • Raven, J. A., 1974b. Energetics of active phosphate influx in Hydrodictyon africanum. J. exp. Bot. 25: 221–229.

    Google Scholar 

  • Short, F. T. & C. Short, 1983. The seagrass filter. Secondary and tertiary purification of coastal waters. Est. Res. Conference Abstract. Estuaries 6: 291.

    Google Scholar 

  • Short, F. T. & C. P. McRoy, 1984. Nitrogen uptake by leaves and roots of the seagrass Zostera marina L. Bot. Mar. 17: 547–555.

    Google Scholar 

  • Short, F. T., 1987. Effects of sediment nutrients on seagrasses: literature review and mesocosm experiment. Aquat. Bot. 27: 41–57.

    Article  Google Scholar 

  • Thomas, T. E. & P. J. Harrison, 1985. Effect of nitrogen supply on nitrogen uptake, accumulation and assimilation in Porphyra perforata (Rodophyta). Mar. Biol. 85: 269–278.

    Google Scholar 

  • Thomas, T. E. & P. J. Harrison, 1987. Rapid ammonium uptake and nitrogen interactions in five intertidal seaweeds grown underfield conditions. J. exp. mar. Biol. Ecol. 107: 1–8.

    Article  Google Scholar 

  • Thursby, G. B. & M. M. Harlin, 1982. Leaf-root interactions in the uptake of ammonia by Zostera marina L. Mar. Biol. 72: 109–112.

    Google Scholar 

  • Thursby, G. B. & M. M. Harlin, 1984. Interaction of leaves and roots of Ruppia maritima in the uptake of phosphate, ammonia and nitrate. Mar. Biol. 83: 61–67.

    Google Scholar 

  • Tomlinson, P. B., 1980. Leaf morphology and anatomy in seagrasses. In Phillips, R. C. & C. P. McRoy (eds), Handbook of Seagrass Biology. An Ecosystem Perspective. Garland STPM Press, New York.

    Google Scholar 

  • Topinka, J. A., 1978. Nitrogen uptake by Fucus spiralis (Phaeophyceae). J. Phycol. 14: 241–247.

    Google Scholar 

  • Ullrich-Eberius, C. I., A. Novacky, E. Fisher & U. Luttge, 1981. Relationship between energy-dependent phosphate uptake and electrical membrane potential in Lemna gibba Gl. Pl. Physiol. 67: 797–801.

    Google Scholar 

  • Vermaat, J. E., M. J. M. Hootsmans & P. H. Nienhuis, 1987. Seasonal dynamics and leaf growth of Zostera noltii Hornem., a perennial intertidal seagrass. Aquat. Bot. 28: 287–299.

    Article  Google Scholar 

  • Zimmerman, R. C., R. D. Smith & R. S. Alberte, 1987. Is growth of eelgrass nitrogen limited?. A numerical simulation of the effects of light and nitrogen on the growth dynamics of Zostera marina. Mar. Ecol. Prog. Ser. 41: 167–176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Lloréns, J.L., Niell, F.X. Short-term phosphate uptake kinetics in Zostera noltii Hornem: a comparison between excised leaves and sediment-rooted plants. Hydrobiologia 297, 17–27 (1995). https://doi.org/10.1007/BF00033498

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00033498

Key words

Navigation