Skip to main content
Log in

Changes in plant growth and photosynthetic performance of Zizania latifolia exposed to different phosphorus concentrations under hydroponic condition

  • Brief Communication
  • Published:
Photosynthetica

Abstract

The effects of phosphate concentration on plant growth and photosynthetic performance were examined in leaves of Zizania latifolia. Plants were grown for four weeks in a solution containing 0, 0.16, 0.64, and 2.56 mM orthophosphate. The results showed that the highest net photosynthetic rate (P N) was achieved at 0.64 mM orthophosphate, which corresponded to the maximum content of organic phosphorus in leaves. Low phosphorus (low-P) content in the culture solution inhibited plant growth, affecting plant height, leaf length, leaf number, tiller number, and fresh mass of leaf, sheath, culm, root, and total plant. In addition, we observed that low-P (0.16 mM) did not hinder the growth of roots but increased the root:shoot ratio, and significantly decreased the chlorophyll content, P N, stomatal conductance, and transpiration rate, but increased the intercellular CO2 concentration. Additionally, low-P significantly decreased the maximum carboxylation rate of Rubisco, the maximum rate of ribulose-1,5-bisphosphate regeneration, the effective quantum yield of PSII photochemistry, photochemical quenching coefficient, and electron transport rate, but increased the nonphotochemical quenching. However, the maximal quantum yield of PSII photochemistry was not significantly affected by low-P. High phosphorus (2.56 mM) caused only a slight decrease in gas-exchange parameters. Therefore, the decrease in growth of P-deficient Z. latifolia plants could be attributed to the lowered photosynthetic rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

C i :

intercellular CO2 concentration

E :

transpiration rate

ETR:

electron transport rate

FM:

fresh mass

Fv/Fm :

maximal quantum yield of PSII photochemistry

g s :

stomatal conductance

J max :

maximum rate of RuBP regeneration

NPQ:

nonphotochemical quenching

P:

phosphorus

Pi :

inorganic phosphorus

P N :

net photosynthetic rate

Po :

organic phosphorus

Ptot :

total phosphorus

qP :

photochemical quenching coefficient

V cmax :

maximum carboxylation rate of Rubisco

ΦPSII :

effective quantum yield of PSII photochemistry

References

  • Campbell C.D., Sage R.E.: Interactions between the effects of atmospheric CO2 content and P nutrition on photosynthesis in white lupin (Lupinus albus L.). — Plant Cell Environ. 29: 844–853, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Chiera J., Thomas J., Rufty T.: Leaf initiation and development in soybean under phosphorus stress. — J. Exp. Bot. 53: 473–481, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Clarkson D.T., Carvajal M., Henzler T. et al.: Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. — J. Exp. Bot. 51: 61–70, 2000.

    Article  CAS  PubMed  Google Scholar 

  • De Groot C.C., Marcelis L.F.M., Van den Boogaard R. et al.: Growth and dry-mass partitioning in tomato as affected by phosphorus nutrition and light. — Plant Cell Environ. 24: 1309–1317, 2001.

    Article  Google Scholar 

  • De Groot C.C., Van den Boogaard R., Marcelis L.F.M. et al.: Contrasting effects of N and P deprivation on the regulation of photosynthesis in tomato plants in relation to feedback limitation. — J. Exp. Bot. 54: 1957–1967, 2003.

    Article  PubMed  Google Scholar 

  • Duchein M.C., Bonicel A., Betsche T.: Photosynthetic net CO2 uptake and leaf phosphate concentrations in CO2 enriched clover (Trifolium subterraneum L.) at three levels of phosphate nutrition. — J. Exp. Bot. 44: 17–22, 1993.

    Article  CAS  Google Scholar 

  • Duff S.M.G., Sarath G., Plaxton W.C.: The role of acid phosphatases in plant phosphorus metabolism. — Physiol. Plantarum 90: 791–800, 1994.

    Article  CAS  Google Scholar 

  • Foyer C., Spencer C.: The relationship between phosphate status and photosynthesis in leaves. Effects on intracellular orthophosphate distribution, photosynthesis and assimilate partitioning. — Planta 167: 369–375, 1986.

    Article  CAS  PubMed  Google Scholar 

  • Fredeen A.L., Raab T.K., Rao I.M. et al.: Effects of phosphorus nutrition on photosynthesis in Glycine max. — Planta 181: 399–405, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Fredeen A.L., Rao I.M., Terry N.: Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. — Plant Physiol. 89: 225–230, 1989.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujita K., Okada M., Lei K. et al.: Effect of P-deficiency on photoassimilate partitioning and rhythmic changes in fruit and stem diameter of tomato (Lycopersicon esculentum) during fruit growth. — J. Exp. Bot. 54: 2519–2528, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta 990: 87–92, 1989.

    Article  CAS  Google Scholar 

  • Ghannoum O., Conroy J.P.: Phosphorus deficiency inhibits growth in parallel with photosynthesis in a C3 (Panicum laxum) but not two C4 (P. coloratum and Cenchrus ciliaris) grasses. — Funct. Plant Biol. 34: 72–81, 2007.

    Article  CAS  Google Scholar 

  • Guo Y.P., Chen P.Z., Zhang L.C. et al.: [Phosphorus deficiency stress aggravate photoinhibition of photosynthesis and function of xanthophyll cycle in citrus leaves.] — J. Plant Nutr. Fertil. Sci. 9: 359–363, 2003. [In Chinese]

    Google Scholar 

  • Hammond J.P., White P.J.: Sucrose transport in the phloem: integrating root responses to phosphorus starvation. — J. Exp. Bot. 59: 93–109, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Jacob J., Lawlor D.W.: Dependence of photosynthesis of sunflower and maize on phosphate supply, ribulose-1,5-bisphosphate carboxylase/oxygenase activity, and ribulose-1,5-bisphosphate pool size. — Plant Physiol. 98: 801–807, 1992.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jacob J., Lawlor D.W.: Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower, maize and wheat plants. — J. Exp. Bot. 42: 1003–1011, 1991.

    Article  CAS  Google Scholar 

  • Jiang L.N., Fu J.R., Fu C.H. et al.: [Effects of balance fertilization on yields and quality of jiaobai (Zizania caduciflora L.).] — Acta Agron. Zhejiang. 15: 161–166, 2003. [In Chinese]

    Google Scholar 

  • Kavanová M., Lattanzi F.A., Grimoldi A.A. et al.: Phosphorus deficiency decreases cell division and elongation in grass leaves. — Plant Physiol. 141: 766–775, 2006.

    Article  PubMed Central  PubMed  Google Scholar 

  • Krause G.H., Weis E.: Chlorophyll fluorescence and photosynthesis: The Basics. — Annu. Rev. Plant Phys. 42: 313–349, 1991.

    Article  CAS  Google Scholar 

  • Lambers H., Shane M.W., Cramer M.D. et al.: Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. — Ann. Bot.-London 98: 693–713, 2006.

  • Lewis J.D., Griffin K.L., Thomas R.B. et al.: Phosphorus supply affects the photosynthetic capacity of loblolly-pine grown in elevated carbon-dioxide. — Tree Physiol. 14: 1229–1244, 1994.

    Article  PubMed  Google Scholar 

  • Li S.C., Hu C.H., Gong J. et al.: [Effects of low phosphorus stress on the chlorophyll fluorescence of different phosphorus use efficient maize (Zea mays L.).] — Acta Agron. Sin. 30: 365–370, 2004. [In Chinese]

    CAS  Google Scholar 

  • Lichtenthaler H.K.: Chlorophylls and carotenoids: Pigments of photosynthetic membranes. — Methods Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Linka N., Weber A.P.M.: Intracellular metabolite transporters in plants. — Mol. Plant 3: 21–53, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Loustau D., Beahim M., Gaudillère J.P. et al.: Photosynthetic responses to phosphorous nutrition in two-year-old maritime pine seedlings. — Tree Physiol. 19: 707–715, 1999.

    Article  PubMed  Google Scholar 

  • McMurtrie R.E., Wang Y.P.: Mathematical models of the photosynthetic response of tree stands to rising CO2 concentrations and temperature. — Plant Cell Environ. 16: 1–13, 1993.

    Article  CAS  Google Scholar 

  • Mollier A., Pellerin S.: Maize root system increment and development as influenced by phosphorous deficiency. — J. Exp. Bot. 50: 487–497, 1999.

    Article  CAS  Google Scholar 

  • Moor U., Põldma P., Tõnutare T. et al.: Effect of phosphite fertilization on growth, yield and fruit composition of strawberries. — Sci. Hortic.-Amsterdam 119: 264–269, 2009.

    Article  CAS  Google Scholar 

  • Müller P., Li X.P., Niyogi K.K.: Non-photochemical quenching. A response to excess light energy. — Plant Physiol. 125: 1558–1566, 2001.

    Article  PubMed Central  PubMed  Google Scholar 

  • Naeem M., Khan M.M.A., Moinuddin I.M. et al.: Phosphorus ameliorates crop productivity, photosynthetic efficiency, nitrogen-fixation, activities of the enzymes and content of nutraceuticals of Lablab purpureus L. — Sci. Hortic. 126: 205–214, 2010.

    Article  CAS  Google Scholar 

  • Nichols D.G., Jones D.L., Beardsell D.V.: The effect of phosphorus on the growth of Grevillea ‘Poorinda firebird’ in the soil-less potting mixture. — Sci. Hortic.-Amsterdam 11: l97–205, 1979.

    Article  Google Scholar 

  • Pieters A.J., Paul M.J., Lawlor D.W.: Low sink demand limits photosynthesis under Pi deficiency. — J. Exp. Bot. 52: 1083–1091, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Plesničar M., Kastori R., Petrović N. et al.: Photosynthesis and chlorophyll fluorescence in sunflower (Helianthus annuus L.) leaves as affected by phosphorus nutrition. — J. Exp. Bot. 45: 919–924, 1994.

    Article  Google Scholar 

  • Radin J.W., Eidenbock M.P.: Hydraulic conductance as a factor limiting leaf expansion of phosphorus-deficient cotton plants. — Plant Physiol. 75: 372–377, 1984.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Radin J.W., Mathews M.A.: Water transport properties of cortical cells in roots of nitrogen- and phosphorus-deficient cotton seedlings. — Plant Physiol. 89: 264–268, 1989.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Radin J.W.: Stomatal responses to water stress and to abscisic acid in phosphorus-deficient cotton plants. — Plant Physiol. 76: 392–394, 1984.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raghothama K.G.: Phosphate acquisition. — Annu. Rev. Plant Phys. 50: 665–693, 1999.

    Article  CAS  Google Scholar 

  • Rao I.M., Terry N.: Leaf phosphate status, photosynthesis, and carbon partitioning in sugar beet: I. Changes in growth, gas exchange and Calvin cycle enzymes. — Plant Physiol. 90: 814–819, 1989.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodríguez D., Andrade F.H., Goudriaan J.: Effects of phosphorus nutrition on tiller emergence in wheat. — Plant Soil 209: 283–295, 1999.

    Article  Google Scholar 

  • Rodríguez D., Zubillaga M.M., Ploschuk E.L. et al.: Leaf area expansion and assimilate production in sunflower (Helianthus annuus L.) growing under low phosphorus conditions. — Plant Soil 202: 133–147, 1998.

    Article  Google Scholar 

  • Schachtman D.P., Reid R.J., Ayling S.M.: Phosphorus uptake by plants: from soil to cell. — Plant Physiol. 116: 447–453, 1998.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shane M.W., McCully M.E., Lambers H.: Tissue and cellular phosphorus storage during development of phosphorus toxicity in Hakea prostrata (Proteaceae). — J. Exp. Bot. 55: 1033–1044, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Sharkey T.D.: Photosynthesis in intact leaves of C3 plants: Physics, physiology and rate limitations. — Bot. Rev. 51: 53–105, 1985.

    Article  Google Scholar 

  • Silber A., Ganmore-Neumann R., Ben-Jaacov J.: The response of three Leucadendron cultivars (Proteaceae) to phosphorus. — Sci. Hortic.-Amsterdam 84: 141–149, 2000.

    Article  CAS  Google Scholar 

  • Sugino Y., Miyoshi Y.: The specific precipitation of orthophosphate and some biochemical applications. — J. Biol. Chem. 239: 2360–2364, 1964.

    CAS  PubMed  Google Scholar 

  • Terry N., Ulrich A.: Effects of phosphorus deficiency on the photosynthesis and respiration of leaves in sugar beet. — Plant Physiol. 51: 43–47, 1973.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Usuda H., Shimogawara K.: Phosphorus deficiency in maize. I. Leaf phosphate status, growth, photosynthesis and carbon partitioning. — Plant Cell Physiol. 32: 497–504, 1991.

    CAS  Google Scholar 

  • Vance C.P., Uhde-Stone C., Allan D.L.: Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. — New Phytol. 157: 423–447, 2003.

    Article  CAS  Google Scholar 

  • Van Kooten O., Snel J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. — Photosynth. Res. 25: 147–150, 1990.

    Article  PubMed  Google Scholar 

  • Wu Y.Q., Li Y., Yang J.W.: [Effects of high phosphorus on phosphorus absorption, transportation and use efficiency of tomato.] — Chin. Agr. Sci. Bull. 25: 162–165, 2009. [In Chinese]

    CAS  Google Scholar 

  • Yan N., Wang X.Q., Xu X.F. et al.: Plant growth and photosynthetic performance of Zizania latifolia are altered by endophytic Ustilago esculenta infection. — Physiol. Mol. Plant P. 83: 75–83, 2013a.

    Article  CAS  Google Scholar 

  • Yan N., Xu X.F., Wang Z.D. et al.: Interactive effects of temperature and light intensity on photosynthesis and antioxidant enzyme activity in Zizania latifolia Turcz. plants. — Photosynthetica 51: 127–138, 2013b.

    Article  CAS  Google Scholar 

  • Zhang J.Z., Chu F.Q., Guo D.P. et al.: Cytology and ultrastructure of interactions between Ustilago esculenta and Zizania latifolia. — Mycol. Prog. 11: 499–508, 2012.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. -P. Guo.

Additional information

Acknowledgements: This work was supported by the National Natural Science Foundation of China (31372055). The authors thank editors and anonymous reviewers for their valuable comments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, N., Zhang, Y.L., Xue, H.M. et al. Changes in plant growth and photosynthetic performance of Zizania latifolia exposed to different phosphorus concentrations under hydroponic condition. Photosynthetica 53, 630–635 (2015). https://doi.org/10.1007/s11099-015-0149-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-015-0149-7

Additional key words

Navigation