Skip to main content
Log in

A central crack element in fracture mechanics

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Crack tip elements integrated with finite element methods are commonly used to determine the two-dimensional crack tip stress fields in fracture mechanics. In this paper a new element is presented which leads to highly accurate and economical solutions. This central crack element is arbitrary in shape, contains the entire crack and treats mixed mode fields. Numerical examples are presented where this element was used in conjunction with the global-local finite element method to illustrate the accuracy and efficiency of the central crack element.

Résumé

Un réseau d'éléments situés à la pointe d'une fissure est souvent utilisé dans les méthodes par élément fini pour déterminer les champs de contraintes à deux dimensions à la pointe d'une fissure et leur influence sur la mécanique de la rupture. Dans ce mémoire, on présente une configuration nouvelle qui conduit à des solutions de haute précision et dont le traitement est très économique. L'élément central par rapport à la fissure présente une forme arbitraire, contient l'ensemble de la fissure et est relatif à des champs de mode mixte. On présente des exemples numériques où cet élément est utilisé en association avec une méthode par éléments finis globale-locale en vue d'illustrer la précision et l'efficacité de l'élément central présenté.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Tada, P.C. Paris and G.R. Irwin, The Stress Analysis of Cracks Handbook, Del Research Corp., Hellertown, Pennsylvania (1973).

    Google Scholar 

  2. G.C. Sih, Handbook of Stress Intensity Factors for Researchers and Engineers, Institute of Fracture and Solid Mechanics, Lehigh University, Bethlehem, Pennsylvania (1973).

    Google Scholar 

  3. V.B. Watwood, Nuclear Engineering and Design 11 (1970) 323–332.

    Article  Google Scholar 

  4. S.K. Chan, I.S. Tuba, and W.K. Wilson, Engineering Fracture Mechanics 2 (1970) 1–17.

    Article  Google Scholar 

  5. E. Byskov, International Journal of Fracture Mechanics 6 (1970) 159–167.

    Article  Google Scholar 

  6. S.E. Benzley and D.M. Parks, in Structural Mechanics Computer Programs-Surveys, Assessments and Availability, W. Pilkey, K. Saczalski and H. Schaeffer (eds.), University Press of Virginia (1974) 81–102.

  7. P. Tong and T.H.H. Pian, International Journal of Solids and Structures 9 (1971) 313–321.

    Google Scholar 

  8. C.D. MoteJr., International Journal for Numerical Methods in Engineering 3 (1971) 565–574.

    Google Scholar 

  9. S.E. Benzley, International Journal for Numerical Methods in Engineering 8 (1974) 537–545.

    Google Scholar 

  10. Y. Yamamoto, in Recent Advances on Matrix Methods of Structural Analysis and Design, University of Alabama Press (1971) 85–103.

  11. G. Yagawa, T. Nishioka, Y. Ando and N. Ogura, in Computational Fracture Mechanics, E. Rybicki and S. Benzley (eds.), ASME Special Publication (1975) 21–34.

  12. N.I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, P. Noordhoff, Groningen, The Netherlands (1953).

    Google Scholar 

  13. L.G. Bradford, S.B. Dong, D.A.C. Nicol and R.A. Westmann, Application of Global-Local Finite Element Method to Fracture Mechanics, Technical Report, EPRI NP-239, Research Project 299-1, September 1976.

  14. L.G. Bradford, S.B. Dong, A. Tessler and R.A. Westmann, GLASS-II-Global Local Finite Element Analysis, Technical Report, EPRI NP-1089, Project 299-1, June 1979.

  15. I.S. Sokolnikoff, in Mathematical Theory of Elasticity, McGraw-Hill (1956) 86.

  16. C.E. Feddersen, in ASTM STP 410 (1967) 77–79.

  17. B. Gross, J.E. Srawley and W.F. Brown, Stress Intensity Factors for a Single-edge-notch Tension Specimen by Boundary Collocation of a Stress Function, NASA TN D-2395 (1964).

  18. S.B. Dong, in State-of-the-Art Surveys in Finite Element Technology, Chapter 14, American Society of Mechanical Engineers Special Publication, A.K. Noor and W.D. Pilkey (eds.) (1983).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradford, L.G., Dong, S.B., Nicol, D.A.C. et al. A central crack element in fracture mechanics. Int J Fract 24, 197–207 (1984). https://doi.org/10.1007/BF00032683

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00032683

Keywords

Navigation